IODP Exp. 374 provides clues into the Antarctic Ice Sheet contribution to sea level changes

Author(s):  
Laura De Santis ◽  
Denise Kulhanek ◽  
Robert McKay

<p>The five sites drilled during International Ocean Discovery Program (IODP) Expedition 374 recovered the distal geological component of a Neogene latitudinal and depth transect across the Ross Sea continental shelf, slope and rise, that can be combined with previous records of ANDRILL and the Deep Sea Drilling Project Leg 28. This transect provides clues into the ocean and atmospheric forcings on marine ice sheet instabilities and provides new direct constraints for reconstructing the Antarctic Ice Sheet contribution to global sea level change. Site U1521 recovered a middle Miocene record that allows identification of the different processes that lead to the expansion and retreat of ice streams emanating from the East and West Antarctic Ice Sheets across the Ross Sea continental shelf. This site also recovered a semi-continuous, expanded, high-resolution record of the Miocene Climatic Optimum in an ice-proximal location. Site U1522 recovered a Pleistocene to upper Miocene sequence from the outer shelf, dating the step-wise continental shelf–wide expansion and coalescing of marine-based ice streams from West Antarctica. Thin diatom-rich mudstone and diatomite beds were recovered in some intervals that provide snapshot records of a deglaciated outer shelf environment in the late Miocene. Site U1523 targeted a Miocene to Pleistocene sediment drift on the outermost continental shelf and informs about the changing vigor of the eastward flowing Antarctic Slope Current (ASC) through time. Changes in ASC vigor is a key control on regulating heat flux onto the continental shelf, making the ASC a key control on ice sheet mass balance. Sites U1524 and U1525 cored a continental rise levee system near the flank of the Hillary Canyon. The upper ~50 m at Site U1525 belong to a large trough-mouth fan deposited to the west of the site. The lower 100 m at Site U1525 and the entire 400 m succession of sediment at Site U1524 recovered near-continuous records of the downslope flow of Ross Sea Bottom Water and turbidity currents, but also of ASC vigor and iceberg discharge. Analyses of Exp. 374 sediments is ongoing, but following initial shipboard characterization, the intial results of sample analysis, the correlation between downhole synthetic logs and the associated seismic sections provide insight into the ages and the processes of erosion and deposition of glacial and marine strata. Exp. 374 sediments are providing key chronological constraints on the major Ross Sea seismic unconformities, enabling reconstruction of paleo-bathymetry and assessment of the geomorphological changes associated with Neogene ice sheet and ocean circulation changes. Exp. 374 results are fundamental for improving the boundary conditions of numerical ice sheet, ocean, and coupled climate models, which are critically required for understanding past ice sheet and global sea level response during warm climate intervals. Such data will enable more accurate predictions of ice sheet behavior and sea level rise anticipated with future warming. </p>

2019 ◽  
Vol 13 (10) ◽  
pp. 2615-2631 ◽  
Author(s):  
Michelle Tigchelaar ◽  
Axel Timmermann ◽  
Tobias Friedrich ◽  
Malte Heinemann ◽  
David Pollard

Abstract. Antarctic ice volume has varied substantially during the late Quaternary, with reconstructions suggesting a glacial ice sheet extending to the continental shelf break and interglacial sea level highstands of several meters. Throughout this period, changes in the Antarctic Ice Sheet were driven by changes in atmospheric and oceanic conditions and global sea level; yet, so far modeling studies have not addressed which of these environmental forcings dominate and how they interact in the dynamical ice sheet response. Here, we force an Antarctic Ice Sheet model with global sea level reconstructions and transient, spatially explicit boundary conditions from a 408 ka climate model simulation, not only in concert with each other but, for the first time, also separately. We find that together these forcings drive glacial–interglacial ice volume changes of 12–14 ms.l.e., in line with reconstructions and previous modeling studies. None of the individual drivers – atmospheric temperature and precipitation, ocean temperatures, or sea level – single-handedly explains the full ice sheet response. In fact, the sum of the individual ice volume changes amounts to less than half of the full ice volume response, indicating the existence of strong nonlinearities and forcing synergy. Both sea level and atmospheric forcing are necessary to create full glacial ice sheet growth, whereas the contribution of ocean melt changes is found to be more a function of ice sheet geometry than climatic change. Our results highlight the importance of accurately representing the relative timing of forcings of past ice sheet simulations and underscore the need for developing coupled climate–ice sheet modeling frameworks that properly capture key feedbacks.


2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2020 ◽  
Author(s):  
Torsten Albrecht ◽  
Ricarda Winkelmann ◽  
Anders Levermann

<p>Simulations of the glacial-interglacial history of the Antarctic Ice Sheet provide insights into dynamic threshold behavior and estimates of the ice sheet's contributions to global sea-level changes, for the past, present and future. However, boundary conditions are weakly constrained, in particular at the interface of the ice-sheet and the bedrock. We use the Parallel Ice Sheet Model (PISM) to investigate the dynamic effects of different choices of input data and of various parameterizations on the sea-level relevant ice volume. We evaluate the model's transient sensitivity to corresponding parameter choices and to different boundary conditions over the last two glacial cycles and provide estimates of involved uncertainties. We also present isolated and combined effects of climate and sea-level forcing on glacial time scales. </p>


2018 ◽  
Author(s):  
Qiang Shen ◽  
Hansheng Wang ◽  
C. K. Shum ◽  
Liming Jiang ◽  
Hou Tse Hsu ◽  
...  

Abstract. Ice velocity constitutes a key parameter for estimating ice-sheet discharge rates and is crucial for improving coupled models of the Antarctic ice sheet to accurately predict its future fate and contribution to sea-level change. Here, we present a new Antarctic ice velocity map at a 100-m grid spacing inferred from Landsat 8 imagery data collected from December 2013 through March 2016 and robustly processed using the feature tracking method. These maps were assembled from over 73,000 displacement vector scenes inferred from over 32,800 optical images. Our maps cover nearly all the ice shelves, landfast ice, ice streams, and most of the ice sheet. The maps have an estimated uncertainty of less than 10 m yr-1 based on robust internal and external validations. These datasets will allow for a comprehensive continent-wide investigation of ice dynamics and mass balance combined with the existing and future ice velocity measurements and provide researchers access to better information for monitoring local changes in ice glaciers. Other uses of these datasets include control and calibration of ice-sheet modelling, developments in our understanding of Antarctic ice-sheet evolution, and improvements in the fidelity of projects investigating sea-level rise (https://doi.pangaea.de/10.1594/PANGAEA.895738).


2020 ◽  
Author(s):  
Ronja Reese ◽  
Anders Levermann ◽  
Torsten Albrecht ◽  
Hélène Seroussi ◽  
Ricarda Winkelmann

<p>Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea-level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams is the major reason for currently observed mass loss from Antarctica and is expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming, and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice-sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice-sheet models, the projected 21st century sea-level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.3 cm of sea-level equivalent in the ISMIP6 simulations where the sub-shelf melt sensitivity is comparably low, opposed to a likely range of 9.2 to 35.9 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity based on oceanographic studies. Furthermore, using two initial states, one with and one without a previous historic simulation from 1850 to 2014, we show that while differences between the ice-sheet configurations in 2015 are marginal, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by about 50%. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice-dynamic response for future sea-level projections.</p>


2020 ◽  
Vol 11 (4) ◽  
pp. 953-976
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to the melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth system model of intermediate complexity LOVECLIMv1.3. The greenhouse forcing is based on the Extended Concentration Pathways defined until 2300 CE with no carbon dioxide emissions thereafter, equivalent to a cumulative CO2 release of between 460 and 5300 GtC. We performed one additional experiment for the highest-forcing scenario with the inclusion of a methane emission feedback where methane is slowly released due to a strong increase in surface and oceanic temperatures. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher-forcing scenarios, the marine basins of the East Antarctic Ice Sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 to more than 37 m. For the highest-forcing scenario, the model uncertainty does not exclude the complete melting of the Antarctic ice sheet during the next 10 000 years.


2020 ◽  
Author(s):  
Ronja Reese ◽  
Anders Levermann ◽  
Torsten Albrecht ◽  
Hélène Seroussi ◽  
Ricarda Winkelmann

Abstract. Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea-level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams is the major reason for currently observed mass loss from Antarctica and is expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming, and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice-sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice-sheet models, the projected 21st century sea-level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.0 cm of sea-level equivalent in the ISMIP6 simulations where the sub-shelf melt sensitivity is comparably low, opposed to a likely range of 9.2 to 35.9 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity based on oceanographic studies. Furthermore, using two initial states, one with and one without a previous historic simulation from 1850 to 2014, we show that while differences between the ice-sheet configurations in 2015 are marginal, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by about 50 %. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice-dynamic response for future sea-level projections.


2021 ◽  
Author(s):  
◽  
Molly O'Rourke Patterson

<p>This thesis investigates orbitally-paced variations in the extent of East Antarctic Ice Sheet (EAIS), and the “downstream” influence of these ice sheet variations on ocean circulation and sea level variability during the Pliocene and Early Pleistocene - a time period characterised by a major global cooling step that culminated in the development of a bipolar glaciated world. Three unique records are examined from (1) the Antarctic margin, (2) the southwest Pacific Ocean, and (3) shallow-marine sedimentary strata exposed in Wangnaui Basin, New Zealand.  The Integrated Ocean Drilling Program (IODP) Site U1361 recovered a continuous sedimentary Early Pliocene to Early Pleistocene (4.3 to 2.0 Ma) record from the lowermost continental rise on the Wilkes Land margin offshore of the EAIS. A facies model and stratigraphic framework were developed that allowed for the identification of glacial advances (massive and laminated mudstones) and retreats (diatom-rich mudstones) across the continental shelf, with evidence for prolonged retreats spanning several glacial to interglacial cycles throughout the Pliocene. These cycles are followed by an extensive Early Pleistocene interval (~2.6 Ma) of diatom-rich mudstone with evidence for reworking by bottom currents, interpreted to be the consequence of downslope density currents associated with increased sea ice production after 2.6 Ma. Frequency analysis on Iceberg Rafted Debris (IBRD) from Site U1361 reveals that under an Early Pliocene warm climate state (4.3 to 3.3 Ma), that ice discharge off the EAIS occurred in response to climate change paced by the 40-kyr cycles of obliquity. Whereas, the colder climate state of Late Pliocene to Early Pleistocene (3.3 to 2.0 Ma) resulted in a transferral of orbital variance to 20-kyr-duration, precession-dominated variability in IBRD preceding the development of a more stable marine-based margin of the EAIS at ~2.6 Ma, which is hypothesized to reflect the declining influence of oceanic forcing as the high-latitude Southern Ocean cooled thereby increasing the seasonal duration and extent of sea-ice. The precession-paced influence on IBRD and ice volume variability of the EAIS was strongly modulated by 100-kyr-eccentricity, which is expressed lithologically in cycles of two alternating lithofacies 1) diatom-rich mudstones and 2) massive and laminted mudstones in the Site U1361 record.  A compilation of benthic stable isotope records from Ocean Drilling Program (ODP) Site 1123 in the southwest Pacific Ocean was also developed. The δ18O record identified a 40-kyr obliquity pacing, consistent with other benthic δ18O records globally for this time period, thus allowing for an orbitally-tuned timescale to be developed for this site. Long-term trends in both the δ18O and δ13C records at ODP Site 1123 coincide with major developments of the Antarctic Ice Sheet and Northern Hemisphere glaciation at 3.33 Ma and ~2.6 Ma respectively. A gradual reduction in the deep water δ13C gradient between the southwest Pacific (ODP Site 1123) and equatorial Pacific (ODP Site 849) between 3.33 and 2.6 Ma coincides with expansion of the Antarctic Ice Sheet, enhanced Antarctic Bottom Water (AABW) production, invigorated atmospheric zonal circulation in the southern hemisphere mid-latitudes, and increased meridional sea surface temperature (SST) gradients in the Pacific Ocean.  Finally, a shallow-marine, continental margin stratigraphic section from the Turakina River Valley in the Wanganui Basin, New Zealand, was used to record local sea-level changes, dominated by orbitally-driven, global glacio-eustasy, during the mid-Pliocene interval (3.2 to 3.0 Ma). This interval was selected as it precedes the build-up of significant Northern Hemisphere Ice Sheet, thus allowing for an independent assessment of the orbtial-scale variability of Antarctic Ice Sheet volume. Grain size based proxy of percent mud was employed to reconstruct paleobathymetric changes, which displayed 100-kyr cycles consistent with ~20 m variations in local water depths during the mid-Pliocene. Combined with IBRD record from Site U1361, this reconstruction suggests that the marine margins of East Antarctica varied at orbital timescale, and provided a significant contribution to global eustatic sea-level variations during the mid Pliocene (consistent with global mean sea-level estimates of up to ~+20 m above present from related studies).</p>


2020 ◽  
Author(s):  
Rupert Gladstone ◽  
John Moore ◽  
Michael Wolovick ◽  
Thomas Zwinger

&lt;p&gt;Computer models for ice sheet dynamics are the primary tools for making future predictions of ice sheet behaviour, the marine ice sheet instability, and ice sheet contributions to sea level rise. However, the dominant mode of flow for ice streams is sliding at the bed, and the physical processes that control sliding are not well understood. Ice sheet models often use hard-bed (often Weertman-type) sliding rules for computational efficiency.&amp;#160; However, soft beds with deformable sediments, which are known from laboratory experiments and direct glacier observations to exhibit Coulomb plastic behaviour, are ubiquitous beneath fast flowing ice streams. Using hard-bed sliding rules leads to actively misleading rates of inland surface diffusion and grounding line migration as compared to plastic beds, leading to incorrect forecasts of future sea level rise. Here, we use a 3D Stokes-flow ice sheet model along with observations of the Antarctic Ice Sheet to infer, through inversions and steady temperature simulations, key basal properties, most important of which are sliding speed, basal resistance, friction heat and grounded ice basal melt rate.&amp;#160; In addition to simulations of the whole Antarctic Ice Sheet we implement fine resolution simulations of the Pine Island Glacier and its catchment.&amp;#160; Contrary to the predictions of most hard-bed sliding relations, we find no correlation between basal resistance and sliding speed for fast moving ice streams. These results emphasize the importance of Coulomb plastic sliding, and strongly suggest that ice sheet modelers should devote greater efforts to developing models that can incorporate Coulomb plastic sliding relations without generating numerical instabilities.&amp;#160; We use our model results, along with some assumptions, to infer properties of the sub-glacial hydrologic system.&amp;#160; Assumptions about connectivity of the sub-glacial hydrologic system to the ocean limit our capacity to assess sliding relations that incorporate a dependence on effective pressure, and likely cause underestimates of ice sheet mass loss in model-based predictions utilising such sliding relations.&amp;#160; Hydrology modelling is likely essential both to further assess sliding relations and to use sliding relations in future predictions.&amp;#160; We estimate that the dominant source of basal meltwater for Pine Island Glacier is due to friction heat caused by basal sliding, despite recent estimates of high heating due to volcanic activity.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document