A comparison of lidar depolarization and particle asphericity in high altitude clouds

Author(s):  
Lorenza Lucaferri ◽  
Luca Di Liberto ◽  
Marcel Snels ◽  
Armin Afchine ◽  
Martina Kraemer ◽  
...  

<p>We present and discuss the comparison between particle depolarization measurement observed in-situ by a backscattersonde (MAS) and particle asphericity measured by an optical particle counter and sizer with detector for particle asphericity (NIXE-CAPS), in high altitude clouds.</p><p>To our knowledge, this is the first time the in situ measurements of particle asphericity are directly compared with particle depolarization, an optical parameter usually accessible in remote sensing.</p><p>The two instruments flew together on the high altitude research aircraft M55 Geophysica, during the STRATOCLIM campaing in 2017, over Nepal. Particle asphericiy and depolarization measured in cirrus clouds will be compared and their dependence on the particle size distribution parameters will be studied. While relationships have been found between depolarization, asphericity and some microphysical parameters of the particle size distribution, quantitative correlations between asphericity and depolarization do not appear. We will discuss possible explanations for this apparent lack of quantitative correlation.</p>

2003 ◽  
Vol 42 (22) ◽  
pp. 5568-5575 ◽  
Author(s):  
Jun Yang ◽  
Ting-Jie Wang ◽  
Hong He ◽  
Fei Wei ◽  
Yong Jin

JOM ◽  
2019 ◽  
Vol 71 (11) ◽  
pp. 4050-4058 ◽  
Author(s):  
Swapnil Morankar ◽  
Monalisa Mandal ◽  
Nadia Kourra ◽  
Mark A. Williams ◽  
Rahul Mitra ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 381 ◽  
Author(s):  
Johann Landauer ◽  
Petra Foerst

Triboelectric charging is a potentially suitable tool for separating fine dry powders, but the charging process is not yet completely understood. Although physical descriptions of triboelectric charging have been proposed, these proposals generally assume the standard conditions of particles and surfaces without considering dispersity. To better understand the influence of particle charge on particle size distribution, we determined the in situ particle size in a protein–starch mixture injected into a separation chamber. The particle size distribution of the mixture was determined near the electrodes at different distances from the separation chamber inlet. The particle size decreased along both electrodes, indicating a higher protein than starch content near the electrodes. Moreover, the height distribution of the powder deposition and protein content along the electrodes were determined in further experiments, and the minimum charge of a particle that ensures its separation in a given region of the separation chamber was determined in a computational fluid dynamics simulation. According to the results, the charge on the particles is distributed and apparently independent of particle size.


2002 ◽  
Vol 36 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Teresa Serra ◽  
Xavier Casamitjana ◽  
Jordi Colomer ◽  
Timothy C. Granata

An in situ laser particle size analyzer (LISST-100, Sequoia Scientific, Inc.) has been used to study the particle size distribution and concentration of biological and non biological particles in the water column of a Mediterranean coastal system. Two field campaigns have been carried out during low and high energy conditions of the flow, caused by the passage of a storm front. For the low energy period, the water column remained stratified, whereas for the high energetic period the water column was warmer and well mixed. The first study dealt with the distribution of particles near the bottom of the coastal area. Here, two regions were taken into account. The first region was a sea-grass meadow of Posidonia oceanica and the second region was a barren sand area. The second study dealt with the determination of the vertical distribution of suspended particles in the whole water column of the system. The results showed a decrease in the vertical concentration of suspended particles in the water column with the passage of the storm front, which was associated with advection of warm water mass rather than by vertical mixing. In contrast, vertical resuspension determined the fate of suspended particles at the bottom of the water column and an increase of their concentration was found.


2018 ◽  
Vol 11 (4) ◽  
pp. 2085-2100 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Vladimir Rozanov ◽  
Patricia Liebing ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Information about aerosols in the Earth's atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S) for 10 years (2002–2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A quasi-biannual oscillation (QBO) pattern at upper altitudes (28–32 km) is prominent in the anomalies of the analysed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes, decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.


2015 ◽  
Vol 54 (20) ◽  
pp. 6367 ◽  
Author(s):  
Yuanzhi Zhang ◽  
Zhaojun Huang ◽  
Chuqun Chen ◽  
Yijun He ◽  
Tingchen Jiang

2016 ◽  
Vol 118 ◽  
pp. 57-64 ◽  
Author(s):  
James Mathew ◽  
Animesh Mandal ◽  
Jason Warnett ◽  
Mark A. Williams ◽  
Madhusudan Chakraborty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document