Comparison of lightning observed by ASIM on the International Space Station and GLM on the GOES-16 geostationary satellite

Author(s):  
Krystallia Dimitriadou ◽  
Olivier Chanrion ◽  
Laure Chaumat ◽  
Hugh J. Christian ◽  
Richard J. Blakeslee ◽  
...  

<p>The Atmosphere-Space Interactions Monitor includes an optical imaging array consisting of 5 nadir-viewing  sensors , dedicated to monitor electrical discharges in and above thunderstorms. Three photometers sample in 337.0/4 nm, the VUV band 180-230 nm and 777.4/5 nm with a sample rate of 100 kHz while the 2 cameras record in 337.0/3 nm and in 777.4/3 nm with a temporal and spatial resolution of 12 frames per second and ~400 m, respectively. The Geostationary Lightning Mapper (GLM) on the GOES-16 satellite is the first operational space-based lightning detector in geostationary orbit measuring in 777.4/1 nm, with a pixel size of ~8-14 km and temporal resolution of up to 500 frames per second.<br>We present an analysis of the signal amplitudes and detection efficiencies of ASIM and GLM based on three mutually detected storms: one in the center and two on the edges of GLM field of view. We find a dependence of the amplitudes and detection efficiencies on the cloud structure and the observation angles of ASIM and GLM. The best agreement between the instruments appears when ASIM detects towards the nadir, but differences in amplitudes may vary by several orders of magnitude.  The cloud structure offers a potential explanation for these differences which we will explore in the presentation.</p>

2021 ◽  
Author(s):  
Chris Alexander Skeie ◽  
Nikolai Østgaard ◽  
Andrey Mezentsev ◽  
Ingrid Bjørge-Engeland ◽  
David Sarria ◽  
...  

<p><em>We investigate and determine the sequence of the Terrestrial Gamma-ray Flashes (TGFs) and the observed optical emissions associated with lightning flashes, as well as the connection between the duration of TGFs and the time between the onset of the TGFs and the observed main optical pulses. Over 200 observations from the instruments of the Atmosphere-Space Interactions Monitor (ASIM) on board the International Space Station (ISS) are used, together with data from the lightning detection networks GLD360 and WWLLN. The ASIM data consist of two separate recordings: High energy measurements from the Modular X- and Gamma-ray Sensor (MXGS), and optical measurements from the Modular Multi-Spectral Imaging Array (MMIA). The optical measurements are from photometers operating in the 337 and 777.4 nm bands, and the temporal uncertainty between the two instruments of ASIM is +- 5 µs.</em></p>


2021 ◽  
Author(s):  
Marco Casolino ◽  
Mario Bertaina ◽  
Enrico Arnone ◽  
Laura Marcelli ◽  
Lech Piotrowski ◽  
...  

<p>Mini-EUSO is a telescope that observes the Earth from the International Space Station by recording ultraviolet emissions (290 ÷ 430 nm) of cosmic, atmospheric and terrestrial origin with a field of view of 44◦, a spatial resolution of 6.3 km and a temporal resolution of 2.5 mus.</p><p>The instrument is based on an optical system composed of two Fresnel lenses and a focal surface composed of 36 multi-anode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity.</p><p>Mini-EUSO is a UV telescope launched in 2019   and observing the Earth from the inside the Russian Zvezda module, through a nadir-facing UV-transparent.</p><p>It is composed of a Fresnel optics (25 cm diameter, 44 deg field of view) and a Multi Anode Photomultiplier focal surface (2304 pixels, 6km on the surface) with a single-photon counting capability and a sampling rate of 400kHz.</p><p>Its scientific objectives include the search for ultra-high energy cosmic rays (E>1e21eV), the study of  meteors and search for interstellar objects and Strange Quark Matter, the  mapping   of the Earth's night-time ultraviolet emissions, the search for space debris.</p><p>The characteristcs of the detector make it also well suited for the detection of TLEs, especially ELVES and the study of its development to extract spatial and temporal evolution.  In this article we will focus our attention on the observation of single and multi-ringed elves.</p>


2019 ◽  
Vol 215 (4) ◽  
Author(s):  
Olivier Chanrion ◽  
Torsten Neubert ◽  
Ib Lundgaard Rasmussen ◽  
Christian Stoltze ◽  
Denis Tcherniak ◽  
...  

2020 ◽  
Vol 13 (11) ◽  
pp. 5549-5566
Author(s):  
Alejandro Luque ◽  
Francisco José Gordillo-Vázquez ◽  
Dongshuai Li ◽  
Alejandro Malagón-Romero ◽  
Francisco Javier Pérez-Invernón ◽  
...  

Abstract. We describe a computer code that simulates how a satellite observes optical radiation emitted by a lightning flash after it is scattered within an intervening cloud. Our code, CloudScat.jl, is flexible, fully open source and specifically tailored to modern instruments such as the Modular Multispectral Imaging Array (MMIA) component of the Atmosphere–Space Interactions Monitor (ASIM) that operates from the International Space Station. In this article, we describe the algorithms implemented in the code and discuss several applications and examples, with an emphasis on the interpretation of MMIA data.


2020 ◽  
Author(s):  
Olivier Chanrion ◽  
Torsten Neubert ◽  
Chiara Zuccoti ◽  
Matthias Heumesser ◽  
Krystallia Dimitriadou ◽  
...  

<p>The Atmosphere-Space Interaction (ASIM) mission was launched on April 2, 2018 and installed on an external platform of the Columbus Module of the International Space Station the 13th.</p><p>The main objectives of the mission are to observe and study thunderstorms and their interaction with the atmosphere. ASIM embarks two main instruments pointing at Nadir, the Modular Multispectral Imaging Array (MMIA) observing in the visible and the Modular X- and Gamma- ray Sensor (MXGS) observing in the X- and Gamma-ray bands.</p><p>In this presentation we focus on observations made by the MMIA which includes two cameras operating in the bands 337/5 nm and 777.4/3 nm and three photometers operating in the bands 180-230 nm, 337/5 nm and 777.4/5 nm. Specifically, we analyze the short duration pulses recorded in the 180-230 nm band.</p><p>After about 2 years of operations, more than 2500 of such events were identified in the data. They are likely to be recordings of ELVEs (Emissions of Light and Very low frequency perturbation due to Electromagnetic pulse sources), occurring in the ionosphere in response to lightning currents.</p><p>We show the amplitude, spatial and temporal distributions of the events and compare the results with those of previous studies. We present an analysis of the temporal characteristics of the pulses themselves and of their delays regarding the parent lightning observed in the other ASIM photometers or in the GLD360 ground lightning detection network recordings. Finally, we compare some typical events with modeling.</p>


2020 ◽  
Author(s):  
Alejandro Luque ◽  
Francisco José Gordillo-Vázquez ◽  
Dongshuai Li ◽  
Alejandro Malagón-Romero ◽  
Francisco Javier Pérez-Invernón ◽  
...  

Abstract. We describe a computer code that simulates how a satellite observes optical radiation emitted by a lightning flash after it is scattered within an intervening cloud. Our code, CloudScat.jl, is flexible, fully open source and specifically tailored to modern instruments such as the Modular Multispectral Imaging Array (MMIA) component of the Atmosphere-Space Interactions Monitor (ASIM) that operates from the International Space Station. In this article we describe the algorithms implemented in the code and discuss several applications and examples, with an emphasis on the interpretation of MMIA data.


2005 ◽  
Author(s):  
Danielle Paige Smith ◽  
Vicky E. Byrne ◽  
Cynthia Hudy ◽  
Mihriban Whitmore

Sign in / Sign up

Export Citation Format

Share Document