Observation of ELVES from the International Space Station with the Mini-EUSO telescope

Author(s):  
Marco Casolino ◽  
Mario Bertaina ◽  
Enrico Arnone ◽  
Laura Marcelli ◽  
Lech Piotrowski ◽  
...  

<p>Mini-EUSO is a telescope that observes the Earth from the International Space Station by recording ultraviolet emissions (290 ÷ 430 nm) of cosmic, atmospheric and terrestrial origin with a field of view of 44◦, a spatial resolution of 6.3 km and a temporal resolution of 2.5 mus.</p><p>The instrument is based on an optical system composed of two Fresnel lenses and a focal surface composed of 36 multi-anode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity.</p><p>Mini-EUSO is a UV telescope launched in 2019   and observing the Earth from the inside the Russian Zvezda module, through a nadir-facing UV-transparent.</p><p>It is composed of a Fresnel optics (25 cm diameter, 44 deg field of view) and a Multi Anode Photomultiplier focal surface (2304 pixels, 6km on the surface) with a single-photon counting capability and a sampling rate of 400kHz.</p><p>Its scientific objectives include the search for ultra-high energy cosmic rays (E>1e21eV), the study of  meteors and search for interstellar objects and Strange Quark Matter, the  mapping   of the Earth's night-time ultraviolet emissions, the search for space debris.</p><p>The characteristcs of the detector make it also well suited for the detection of TLEs, especially ELVES and the study of its development to extract spatial and temporal evolution.  In this article we will focus our attention on the observation of single and multi-ringed elves.</p>

Author(s):  
F. Bisconti ◽  
H. Miyamoto ◽  
D. Barghini ◽  
M. Battisti ◽  
A. Belov ◽  
...  

AbstractMini-EUSO is part of the JEM-EUSO program and operates on board the International Space Station (ISS). It is a UV-telescope with single-photon counting capability looking at nighttime downwards to the Earth through a nadir-facing UV-transparent window. As part of the pre-flight tests, the Mini-EUSO engineering model, a telescope with 1/9 of the original focal surface and a lens of 2.5 cm diameter, has been built and tested. Tests of the Mini-EUSO engineering model have been made in laboratory and in open-sky conditions. Laboratory tests have been performed at the TurLab facility, located at the Physics Department of the University of Turin, equipped with a rotating tank containing different types of materials and light sources. In this way, the configuration for the observation of the Earth from space was emulated, including the Mini-EUSO trigger schemes. In addition to the qualification and calibration tests, the Mini-EUSO engineering model has also been used to evaluate the possibility of using a JEM-EUSO-type detector for applications such as observation of space debris. Furthermore, observations in open-sky conditions allowed the studies of natural light sources such as stars, meteors, planets, and artificial light sources such as airplanes, satellites reflecting the sunlight, and city lights. Most of these targets could be detected also with Mini-EUSO. In this paper, the tests in laboratory and in open-sky conditions are reported, as well as the obtained results. In addition, the contribution that such tests provided to foresee and improve the performance of Mini-EUSO on board the ISS is discussed.


2021 ◽  
Author(s):  
Matteo Battisti ◽  
Enrico Arnone ◽  
Mario Bertaina ◽  
Marco Casolino ◽  
Laura Marcelli ◽  
...  

<p>Elves are the most common type of transient luminous events, with estimates of their global occurrence rate ranging from a few to a few tens per minute. Here, we present the first derivation of the global occurrence rate of elves from Mini-EUSO observations. Mini-EUSO is a wide field of view, space-based telescope operating from a nadir-facing UV-transparent window in the Russian Zvezda module on the International Space Station. It observes the Earth’s atmosphere in the UV band with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs. Its optical system made of two 25 cm diameter Fresnel lenses focuses the light into a square array of 48x48 pixels, each pixel being capable of single photon counting. Originally designed to detect the faint fluorescence light produced by extensive air showers induced by extreme energy cosmic rays, it was shown to be capable of detecting a wide range of atmospheric phenomena, including elves. Elves are dynamically traced by Mini-EUSO in their horizontally expanding, fast donut-shaped light emissions and can therefore be unequivocally identified. Mini-EUSO can usually detect elves whose center is just outside the field of view, following the expansion of the ring for hundreds of microseconds. Combining the number of detected elves with consideration of the time and geometries, it is possible to derive a first estimate of their global occurrence rate with Mini-EUSO, and to compare it to the literature. </p>


2016 ◽  
Vol 52 (3) ◽  
pp. 252-258 ◽  
Author(s):  
V. S. Bartosh ◽  
I. V. Belago ◽  
M. S. D’yakov ◽  
S. A. Kuzikovskii ◽  
A. S. Pereverzev

2021 ◽  
Author(s):  
Dario Barghini ◽  
Matteo Battisti ◽  
Alexander Belov ◽  
Mario Edoardo Bertaina ◽  
Sara Bertone ◽  
...  

<p>During its first six months of operations onboard the Zvezda module of the International Space Station, the Mini-EUSO wide-field telescope detected more than two thousand meteors in approximately 40 hours of data taking. Mini-EUSO observes the Earth’s atmosphere in the UV range (290 – 430 nm) with a field of view of about 44° x 44° through a nadir-facing, UV-transparent window with a focal surface of 48 x 48 pixels and a resolution of about 6.3 km on ground. While temporal resolution and triggering are at the timescales of 2.5 μs to potentially record UHECR showers and TLEs, Mini-EUSO performs a continuous monitoring of the UV emission at a 40.96 ms timescale, where meteors are recorded. We developed an analysis pipeline able to offline detect, track and characterize meteor events and subsequently compute their physical parameters, such as tangential speed, magnitude, duration and trajectory azimuth. In this contribution, we present the implemented reduction methods and the results of the analysis of the sample, providing comparisons with existing databases of meteors observed in the optical band.</p>


Author(s):  
Kentaro UJI ◽  
Ichiro YOSHIKAWA ◽  
Kazuo YOSHIOKA ◽  
Go MURAKAMI ◽  
Atsushi YAMAZAKI

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shin’ya Nakano ◽  
Yuta Hozumi ◽  
Akinori Saito ◽  
Ichiro Yoshikawa ◽  
Atsushi Yamazaki ◽  
...  

AbstractThe extreme ultraviolet (EUV) imager, EUVI-B, on board the International Space Station (ISS) under the International Space Station–ionosphere-mesosphere-atmosphere plasmasphere cameras (ISS-IMAP) mission was originally intended to observe EUV emissions at 83.4 nm scattered by $${\mathrm O}^+$$ O + ions. During the mission, EUVI-B occasionally detected evident EUV signals in the umbra of the Earth. However, the source of the signals has not been verified. To evaluate the effect of the 83.4 nm EUV, we conduct a Monte Carlo simulation which considers multiple scattering of the 83.4 nm EUV by $${\mathrm O}^+$$ O + ions. In addition, we modeled the contribution of the 91.1 nm emission, which is due to recombination of $${\mathrm O}^{+}$$ O + ions and electrons, because the 91.1 nm EUV might affect the measurement from EUVI-B due to the wavelength range covered. The results suggest that the effect of the 83.4 nm EUV is likely to be negligible while the 91.1 nm EUV explains the observations from EUVI-B morphologically and quantitatively. We therefore conclude that the EUV signals observed by EUVI-B in the umbra of the Earth can largely be attributed to 91.1 nm emission due to recombination. This conclusion would facilitate the use of the EUVI-B data for reconstructing the $${\mathrm O}^+$$ O + density.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
T. V. Grebennikova ◽  
A. V. Syroeshkin ◽  
E. V. Shubralova ◽  
O. V. Eliseeva ◽  
L. V. Kostina ◽  
...  

Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon’s material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genusMycobacteria, DNA of the strains of capsular bacteriaBacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genusMycobacteriaand the extreme bacterium of the genusDelftiain the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genusMycobacteriawas genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas’ coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.


Sign in / Sign up

Export Citation Format

Share Document