Arc-arc collision in the Central Asian Orogenic Belt: insight from the eastern segment of the Irtysh Shear Zone, NW China.

Author(s):  
Wanwan Hu ◽  
Pengfei Li

<p>As the largest accretionary orogen, the Central Asian Orogenic Belt (CAOB) involved episodic accretion/collision of arc terranes or microcontinental blocks from Neoproterozoic to late Paleozoic. Understanding the time and processes of such collisional events is crucial for the tectonic reconstruction of the CAOB. Here we focus on the Irtysh Shear Zone that represents the suture of the Peri-Siberian orogenic system (Chinese Altai Orogen) with the Kazakhstan orogenic system/East Junggar Terrane. On a basis of a combined structural and chronological study along the eastern segment of the Irtysh Shear Zone (Qinghe area), we reconstructed the collisional processes of the Chinese Altai Orogen with an intra-oceanic island arc of the East Junggar Terrane. Our results show that the oceanic basin between the Chinese Altai Orogen and the East Junggar Terrane was completely consumed in the late Carboniferous. The following arc-arc collision was characterized by early stage of orogen-perpendicular contraction, followed by orogen-parallel extension and transpressional deformation. The orogen-parallel extension, which is demonstrated by originally sub-horizontal foliation and associated orogen-parallel stretching lineation, may have be responsible for Permian high-temperature metamorphism and extensive magmatism in the southern Chinese Altai. On a scale of the western CAOB, the sinistral kinematics of the Irtysh Shear Zone, together with dextral shearing farther south in the Tianshan, suggests eastward tectonic wedging in the Permian, possibly in response to the coeval convergence of the Siberian, Baltic, and Tarim cratons.</p><p>E-mail addresses: [email protected], [email protected] (P. Li).</p><p>Acknowledgements: this study was financially supported by the National Natural Science Foundation of China (41872222), the National Key Research and Development Program of China (2017YFC0601205), Hong Kong Research Grant Council (HKU17302317) and a project from Guangdong Province (2019QN01H101).</p>

2021 ◽  
Author(s):  
Pengfei Li

<p>The western Central Asian Orogenic Belt (CAOB) underwent the prolonged accretion from Neoproterozoic to latest Paleozoic, and evolved into an intracontinental orogenic environment in the Mesozoic to Cenozoic, which was accompanied by significant changes of climatic environments. To constrain earlier accretion mechanisms and processes of the CAOB is fundamentally important given its control on the orogenic architecture and paleogeography, which inevitably affects the subsequent intracontinental orogeny. Here, I focus on the late Paleozoic tectonic reconstruction of the western CAOB with an aim to understand the role of oroclinal bending, arc amalgamation, and large-scale transcurrent tectonics in shaping the orogenic architecture of the western CAOB. My results show that the development of the U-shaped Kazakhstan Orocline in the western CAOB may have been controlled by the along-strike variation of the trench retreat, which was accompanied by the consumption of the Junggar Ocean in the core area of the orocline. The subsequent amalgamation of multiple arcs in the western CAOB may further amplify the oroclinal structure, and I emphasize that the orogen-parallel extension plays a significant role in arc amalgamation of the western CAOB. In the Permian, the large scale of strike-slip faults characterized the western CAOB with sinistral shearing in the north (Chinese Altai) and dextral kinematics in the south (Tianshan), which together indicates the eastward migration of orogenic materials (current coordinate). Following the termination of accretionary orogeny, the western CAOB was in an intracontinental environment with relatively arid climate in the early to middle Triassic as indicated by the widespread occurrence of red beds, which may mark the initiation of aridification in Central Asia.</p><p>Acknowledgements: this study was financially supported by the Hong Kong Research Grant Council (HKU17302317), the international partnership program of the Chinese Academy of Sciences (132744KYSB20200001), the National Key Research and Development Program of China (2017YFC0601205), the National Natural Science Foundation of China (41872222) and a project from Guangdong Province (2019QN01H101).</p>


Sign in / Sign up

Export Citation Format

Share Document