Surprisingly thick active layer of permafrost in the mountain slope in the SW Svalbard

Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost along inclined profile between the coast and the mountain slope in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the permafrost where apparent P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. Independent refraction seismic analysis in two seasons shows in average 10 m thick sedimentary layer on top of compacted bedrock. In sediments P wave velocity is changing from 1500 m/s to 4000 m/s between seasons. Velocities in the bedrock are also changing from 4000 m/s to 5500 m/s. Moreover, tomographic interpretation shows that significant change in P wave velocities is observed down to 30 meters.</p><p>Such unusual active layer behavior is confirmed in in-situ thermal observations with above 0C temperatures at the depth of 19m. Those observations can be explained with strong underground flow during the frozen period confirmed with borehole. </p><p> </p><p><strong>Acknowledgements               </strong></p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>

1966 ◽  
Vol 6 (44) ◽  
pp. 209-221 ◽  
Author(s):  
Robin A. I. Bell

AbstractA portable first-arrival seismic refraction instrument was used to measure seismic P-wave velocities in ice, frozen ground, till and shattered rock at various places in the McMurdo Sound region, Antarctica. It was found that some frozen ground exhibits the same seismic velocity as ice, so that buried ice cannot be idengified by seismic velocity measurements.The depth of exfoliation of a granite outcrop in Taylor Valley was successfully measured, as was the depth of an ice-free moraine in Wright Valley. From this latter depth, and from reasonable assumptions about the diffusion of water vapour through till, a minimum age of 75,000 yr. has been deduced for the moraine. This age implies that no through-glacier occupied Wright Valley during the last Northern Hemisphere glaciation.


2020 ◽  
Vol 221 (1) ◽  
pp. 722-739 ◽  
Author(s):  
Takeshi Sato ◽  
Tetsuo No ◽  
Ryuta Arai ◽  
Seiichi Miura ◽  
Shuichi Kodaira

SUMMARY We obtain the crustal structure from active-source seismic surveys using ocean bottom seismographs and seismic shots to elucidate the evolutionary process from continental rifting to the backarc basin opening in the Yamato Basin and Oki Trough in the southern Japan Sea. Results show that the crust changes from approximately 14–15 km thick in the basin (the southern Yamato Basin) to 16.5–17 km in the margin of the basin (the southwestern edge of the Yamato Basin). The P-wave velocity distribution in the crust of the southern Yamato Basin is missing a typical continental upper crust with P-wave velocities of 5.4–6.0 km s–1, and is thought be a thicker oceanic crust formed by a backarc basin opening. By contrast, the crust of the southwestern edge of the Yamato Basin might have been formed by continental rifting because there is an unit with P-wave velocities of 5.4–6.0 km s–1 and with a gentle velocity gradients, corresponding to the continental upper crust in this area. This variation might reflect differences in mantle properties from continental rifting to backarc basin opening of the Yamato Basin. Because the Oki Trough has a crustal thickness of 17–19 km and having a unit with P-wave velocities of 5.4–6.0 km s–1, corresponding to the continental upper crust with a high-velocity lower crust, we infer that this trough was formed by continental rifting with magmatic intrusion or underplating. These crustal variations might reflect transitional stages from continental rifting to backarc basin opening in the southern Japan Sea.


1966 ◽  
Vol 6 (44) ◽  
pp. 209-221
Author(s):  
Robin A. I. Bell

AbstractA portable first-arrival seismic refraction instrument was used to measure seismic P-wave velocities in ice, frozen ground, till and shattered rock at various places in the McMurdo Sound region, Antarctica. It was found that some frozen ground exhibits the same seismic velocity as ice, so that buried ice cannot be idengified by seismic velocity measurements.The depth of exfoliation of a granite outcrop in Taylor Valley was successfully measured, as was the depth of an ice-free moraine in Wright Valley. From this latter depth, and from reasonable assumptions about the diffusion of water vapour through till, a minimum age of 75,000 yr. has been deduced for the moraine. This age implies that no through-glacier occupied Wright Valley during the last Northern Hemisphere glaciation.


2018 ◽  
Vol 67 (1) ◽  
pp. 41-57
Author(s):  
Monika Dec ◽  
Marcin Polkowski ◽  
Tomasz Janik ◽  
Krystyna Stec ◽  
Marek Grad

Sign in / Sign up

Export Citation Format

Share Document