mountain slope
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
A.R. Baymakhan ◽  
◽  
A. Serikkyzy ◽  
G.M. Baymakhanova ◽  
A.K. Rysbaeva ◽  
...  

The method of reconstruction and investigation of the pre-landslide condition of the tragic landslide «Ak-Kain» of the Northern Tien Shan is proposed. A model and a finite element algorithm for studying the stress-strain state (VAT) of soil sediments of an obliquely layered structure are briefly presented. The established zones and places of accumulation of dangerous stress concentrations along the inclined layer that led to the tragedy are shown. The plots show the found other areas of hazardous stress concentrations prone to destruction.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 998
Author(s):  
Naoto Nishimoto ◽  
Yosuke Yamamoto ◽  
Saburo Yamagata ◽  
Toshifumi Igarashi ◽  
Shingo Tomiyama

Understanding the origin of acid mine drainage (AMD) in a closed mine and groundwater flow system around the mine aids in developing strategies for environmental protection and management. AMD has been continuously collected and neutralized at Osarizawa Mine, Akita Prefecture, Japan, since the mine was closed in the 1970s, to protect surrounding river water and groundwater quality. Thus, water samples were taken at the mine and surrounding groundwaters and rivers to characterize the chemical properties and environmental isotopes (δ2H and δ18O). The results showed that the quality and stable isotope ratios of AMD differed from those of groundwater/river water, indicating that the recharge areas of AMD. The recharge area of AMD was evaluated as the mountain slope at an elevation of 400–500 m while that of the surrounding groundwater was evaluated at an elevation of 350–450 m, by considering the stable isotopes ratios. This indicates that the groundwater affected by AMD is limited to the vicinity of the mine and distributed around nearby rivers.


Author(s):  
J. Knight ◽  
S.W. Grab

Abstract Mountains are areas of high potential sediment yield due to their steep slopes and generally cool, wet climates. Mountain sediments are moved by gravity-driven and often cryogenically-influenced processes, and captured within valleys or footslopes in the form of screes, alluvial/colluvial fans and terraces, or on hillslopes in the form of solifluction sheets, debris lobes/ridges and openwork block deposits. This study critically examines the geomorphic, sedimentary, stratigraphic and dating evidence from cryogenically-influenced late Quaternary slope deposits found along the highest sectors of the Great Escarpment in the Eastern Cape Province (South Africa) and Maloti–Drakensberg range (Lesotho, and KwaZulu-Natal Province, South Africa). This evidence is set in the context of mountain weathering and erosion/transportation processes during the late Quaternary, and the dynamics of such sedimentary systems. Despite many general reports and observations, there is little detailed and quantitative evidence for late Quaternary slope processes, products and stratigraphy in southern Africa. This study integrates the existing morphological, sedimentary and dating evidence to examine mountain slope evolution in southern Africa based on the conceptual framework of sediment cascades. Application of this framework can help explain the spatial and temporal differences in sediment supply and dynamics observed in different sectors of the Great Escarpment during the late Quaternary.


2021 ◽  
Vol 30 (1) ◽  
pp. 27-30
Author(s):  
Darin J. McNeil ◽  
Bettina Erregger

Although certain forms of parental care are relatively widespread phenomena among insects, within Orthoptera, parental care is rare. Short-tailed burrowing crickets (Anurogryllus spp.) are among the few members of this order for which extensive parental care has been documented. However, accounts of parental care in Anurogryllus have been largely under laboratory conditions, and observations of this behavior in the wild are rare. Herein we present photographic observations from a mountain slope in Honduras where we discovered an active Anurogryllus brood chamber where an adult female was tending her brood. We present these results in the context of parental care in insects and compare our observations with those reported in past literature published on Anurogryllus crickets’ parental behavior.


2021 ◽  
Author(s):  
Thorsteinn Saemundsson ◽  
Pall Einarsson ◽  
Halldor Geirsson ◽  
Joaquin Belart ◽  
Asta Rut Hjartardottir ◽  
...  

<p>A large deep seated gravitational slope deformation has been detected in a mountain slope north of the Tungnakvíslarjökull outlet glacier, in the western part of the Mýrdalsjökull ice cap in South Iceland. Mýrdalsjökull also hosts the Katla central volcano, which erupted spectacularly last in 1918. Based on comparison of Digital Elevation Models (DEMs) obtained from aerial photographs, lidar and Pléiades stereoimages, the slope has been showing slow gravitational slope deformation since 1945 to present. The total vertical displacement in 1945-2020 is around 200 m. The deformation rate has not been constant over this time period and the maximum deformation occurred between 1999 and 2004 of total of 94 m or about 19 m/year.</p><p>The mountain slope north of the Tungnakvíslarjökull outlet glacier reaches up to around 1100 m height. The head scarp of the slide, which is almost vertical, is around 2 km wide rising from about 400-500 m in the western part up to the Mýrdalsjökull glacier at 1100 m in the east. The area of deformation, from the head scarp down to the present-day ice margin is around 1 km<sup>2</sup>. The total volume of the moving mass is not known as the depth of the sliding plane is not known, but the minimum mobile rock volume is between 100 to 200 million m<sup>3</sup>. The entire slope shows signs of displacement and is heavily fractured. Continuous GNSS stations which were installed in the uppermost part of the slope in August 2019 and in the lower part of the slope in 2020 provide real-time displacements. The GNSS time series show evidence of seasonal motion of the landslide, with highest deformation rates occurring in late summer or fall. Historically, seismicity in the area has been at maximum in the fall, although little seismicity has been observed since the GNSS stations were installed.</p><p>There are two main ideas of the causes for this deformation. One is the consequences of slope steepening by glacial erosion, followed by unloading and de-buttressing due to glacial retreat. Another proposed cause for the deformation is related to its location on the western flank of the Katla volcano. Persistent seismic activity in this area for decades may be explained by a slowly rising cryptodome into the base of the slope, which may also explain the slope failure.</p>


InterConf ◽  
2021 ◽  
pp. 917-933
Author(s):  
Аkbota Serikkyzy ◽  
A. Baimakhan ◽  
A. Makhanova ◽  
Baimakhan Baimakhan ◽  
G. Baimakhanova

The results of theoretical and experimental works devoted to the determination of the physical and mechanical properties of water–saturated soil are analyzed. On the basis of a comprehensive analysis, conclusions are formulated, and a method is proposed for determining the Young’s modulus and Poisson’s ratio for water-saturated soil, depending on humidity (degree of saturation) and porosity. Tables of data on the physical and mechanical properties of water–saturated soil are proposed. The study established the places of formation of local stress concentrations along the inclined layer. The values of dangerous stress concentrations found in various areas of the mountain slope that are vulnerable to collapse are shown in the tables.


2021 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost along inclined profile between the coast and the mountain slope in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the permafrost where apparent P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. Independent refraction seismic analysis in two seasons shows in average 10 m thick sedimentary layer on top of compacted bedrock. In sediments P wave velocity is changing from 1500 m/s to 4000 m/s between seasons. Velocities in the bedrock are also changing from 4000 m/s to 5500 m/s. Moreover, tomographic interpretation shows that significant change in P wave velocities is observed down to 30 meters.</p><p>Such unusual active layer behavior is confirmed in in-situ thermal observations with above 0C temperatures at the depth of 19m. Those observations can be explained with strong underground flow during the frozen period confirmed with borehole. </p><p> </p><p><strong>Acknowledgements               </strong></p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


Jurnal Galam ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 79-92
Author(s):  
Fajar Lestari ◽  
◽  
Susy Andriani ◽  

The use of medicine derived from natural ingredients had already begun since ancestors and passed down from generation to generation. However, the properties of those various plants were not clinically been proven. This study aims to find out phytochemical content of medicinal forest plants based on information from the local communities. The study was conducted in two ecosystem types namely wetland ecosystem in peat swamp of Sungai Rasau, Sebangau National Park, Central Kalimantan and dryland ecosystem in Meratus Mountain slope, Peramasan Bawah village, South Kalimantan. Vegetation data in the field was collected by making line transect. Phytochemical analyses qualitatively was done in the Faculty of Math and Natural Science laboratory of Lambung Mangkurat University, while specimen samples were taken from some species that commonly used by the local communities for medicinal purpose as 100 to 150 g of gross weight of each plants. Then the plant specimens were tested for their secondary metabolites comprised steroids/triterpenoids, quinone, tannin, flavonoids, saponins, and alkaloids tests in the laboratory. The research results showed that medicinal plants used by local communities were still available in their natural habitat.


Sign in / Sign up

Export Citation Format

Share Document