scholarly journals Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting

Author(s):  
Sebastian Lerch ◽  
Benedikt Schulz ◽  
Mehrez El Ayari ◽  
Sándor Baran

<p>In order to enable the transition towards renewable energy sources, probabilistic energy forecasting is of critical importance for incorporating volatile power sources such as solar energy into the electrical grid. Solar energy forecasting methods often aim to provide probabilistic predictions of solar irradiance. In particular, many hybrid approaches combine physical information from numerical weather prediction models with statistical methods. Even though the physical models can provide useful information at intra-day and day-ahead forecast horizons, ensemble weather forecasts from multiple model runs are often not calibrated and show systematic biases. We propose a post-processing model for ensemble weather predictions of solar irradiance at temporal resolutions between 30 minutes and 6 hours. The proposed models provide probabilistic forecasts in the form of a censored logistic probability distribution for lead times up to 5 days and are evaluated in two case studies covering distinct physical models, geographical regions, temporal resolutions, and types of solar irradiance. We find that post-processing consistently and significantly improves the forecast performance of the ensemble predictions for lead times up to at least 48 hours and is well able to correct the systematic lack of calibration.</p>

2013 ◽  
Vol 17 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
D. E. Robertson ◽  
D. L. Shrestha ◽  
Q. J. Wang

Abstract. Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post-processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post-processing raw numerical weather prediction (NWP) rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast lead times. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post-process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed bivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast lead times and for cumulative totals throughout all forecast lead times. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post-processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post-processing method for a wider range of climatic conditions and also investigate the benefits of using post-processed rainfall forecasts for flood and short-term streamflow forecasting.


2020 ◽  
Vol 10 (17) ◽  
pp. 5808 ◽  
Author(s):  
Keran Chen ◽  
Ping Wang ◽  
Xiaojun Yang ◽  
Nan Zhang ◽  
Di Wang

In weather forecasting, numerical weather prediction (NWP) that is based on physical models requires proper post-processing before it can be applied to actual operations. Therefore, research on intelligent post-processing algorithms has always been an important topic in this field. This paper proposes a model output deep learning (MODL) method for post-processing, which can improve the forecast effect of numerical weather prediction. MODL is an end-to-end post-processing method based on deep convolutional neural network, which directly learns the mapping relationship between the forecast fields output by numerical model and the observation temperature field in order to obtain more accurate temperature forecasts. MODL modifies the existing deep convolution model according to the post-processing problem’s characteristics, thereby improving the performance of the weather forecast. This paper uses The International Grand Global Ensemble (TIGGE) dataset from European Centre for Medium-Range Weather Forecasts (ECMWF) and the observed air temperature of 2 m obtained from Tianjin meteorological station in order to test the post-processing performance of MODL. The MODL method applied to temperature in post-processing is compared with the ECMWF forecast, Model Output Statistics (MOS) methods, and Model Output Machine Learning (MOML) methods. The Root Mean Square Error (RMSE) of the temperature field predicted by MODL and the observed temperature field is smaller than the other models and the accuracy of the temperature difference of 2 °C (Acc) is higher, especially where the prediction time is in the first three days. The lightweight nature of MODL also makes it suitable for most operations.


Solar Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 1016-1031
Author(s):  
Benedikt Schulz ◽  
Mehrez El Ayari ◽  
Sebastian Lerch ◽  
Sándor Baran

1988 ◽  
Vol 128 ◽  
pp. 285-286
Author(s):  
R. D. Rosen ◽  
D. A. Salstein ◽  
T. Nehrkorn ◽  
J. O. Dickey ◽  
T. M. Eubanks ◽  
...  

A new approach to forecasting changes in length-of-day (δl.o.d) with lead times from one to ten days is examined. The approach is based on the high correlation that has been shown to exist between high frequency changes in l.o.d. and those in the atmosphere's angular momentum (M). Because forecasts of tropospheric values of M can be calculated from the zonal wind fields produced by operational numerical weather prediction models, it seems worth investigating whether these forecasts are sufficiently skillful to use to infer the evolution of δl.o.d. Here, we examine the quality of M forecasts made by the Medium Range Forecast (MRF) model of the U.S. National Meteorological Center (NMC). By comparing these forecasts against those based on a simple model of persistence, we find that skillful forecasts of M are being achieved on average by the MRF, although there has been much month-to-month variability in forecast quality. Overall, our results indicate that for prediction lead times of 1–10 days, dynamically-based forecasts of δl.o.d. represent a viable alternative to the empirical approaches currently in use.


2014 ◽  
Vol 223 (12) ◽  
pp. 2621-2630 ◽  
Author(s):  
Ken-ichi Shimose ◽  
Hideaki Ohtake ◽  
Joao Gari da Silva Fonseca ◽  
Takumi Takashima ◽  
Takashi Oozeki ◽  
...  

Solar Energy ◽  
2013 ◽  
Vol 94 ◽  
pp. 305-326 ◽  
Author(s):  
Richard Perez ◽  
Elke Lorenz ◽  
Sophie Pelland ◽  
Mark Beauharnois ◽  
Glenn Van Knowe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document