Acceleration and Loss of Ultra-relativistic Electrons in the Earth Van Allen Radiation Belts

Author(s):  
Yuri Shprits ◽  
Hayley Allison ◽  
Alexander Drozdov ◽  
Dedong Wang ◽  
Nikita Aseev ◽  
...  

<p>Measurements from the Van Allen Probes mission clearly demonstrated that the radiation belts cannot be considered as a bulk population above approximately electron rest mass. Ultra-relativistic electrons (~>4Mev) form a new population that shows a very different morphology (e.g. very narrow remnant belts) and slow but sporadic acceleration.</p><p>We show that acceleration to multi-MeV energies can not only result of a two-step processes consisting of local heating and radial diffusion but occurs locally due to energy diffusion by whistler mode waves. Local heating appears to be able to transport electrons in energy space from 100s of keV all the way to ultra-relativistic energies (>7MeV). Acceleration to such high energies occurs only for the conditions when cold plasma in the trough region is extremely depleted down to the values typical for the plasma sheet.</p><p>There is also a clear difference between the loss mechanisms at MeV and multi MeV energies The difference between the loss mechanisms at MeV and multi-MeV energies is due to EMIC waves that can very efficiently scatter ultra-relativistic electrons, but leave MeV electrons unaffected.</p><p>We also present how the new understanding gained from the Van Allen Probes mission can be used to produce the most accurate data assimilative forecast. Under the recently funded EU Horizon 2020 Project Prediction of Adverse effects of Geomagnetic storms and Energetic Radiation (PAGER) we will study how ensemble forecasting from the Sun can produce long-term probabilistic forecasts of the radiation environment in the inner magnetosphere.</p>

2021 ◽  
Author(s):  
Nursultan Toyshiev ◽  
Galina Khachikyan ◽  
Beibit Zhumabayev

<p>Recently, attention was drawn [1] that after geomagnetic storms that cause formation of new radiation belts in slot region or in the inner magnetosphere, after about 2 months, there is an increase in seismic activity near the footprints of geomagnetic lines of new radiation belts. More detailed studies showed [2] that on May 30, 1991, an earthquake M=7.0 occurred in Alaska with (54.57N, 161.61E) near the footprint of geomagnetic line L = 2.69 belonging to new radiation belt, which was observed by the CRRES satellite [3] around geomagnetic lines 2<L<3 after geomagnetic storm on March 24, 1991. After geomagnetic storm on September 3, 2012, the Van Allen Probes satellites observed new radiation belt around 3.0≤L≤3.5 [4], and about 2 months later, on October 28, 2012, earthquake M=7.8 occurred off the coast of Canada (52.79N, 132.1W) near the footprint of geomagnetic line L=3.32 belonging to the new radiation belt. Also, Van Allen Probes observed new radiation belt around L=1.5-1.8 after geomagnetic storm on June 23, 2015 [5], and ~2 months later, in September 2015, seismic activity noticeably increased near the footprint of these geomagnetic lines. We consider variations in seismic activity in connection with the strongest geomagnetic storms in 2003 with Dst~- 400 nT (Halloween Storm) and the formation of a belt of relativistic electrons in the inner magnetosphere around L~1.5 existed until the end of 2005 as observed SAMPEX [6]. Analysis of data from the USGS global seismological catalog showed that near the footprint of geomagnetic lines L=1.4-1.6 the number of earthquakes with M≥4.5 increased in 2003-2004 by ~70% compared with their number in two previous years. On the Northern Tien Shan, on December 1, 2003 a strong for the region earthquake M=6.0 occurred on the border of Kazakhstan and China (42.9N, 80.5E) near the footprint of L = 1.63, adjacent to the new radiation belt.</p>


2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2021 ◽  
Author(s):  
Sigiava Aminalragia-Giamini ◽  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

<p>The nature of the semi-annual variation in the relativistic electron fluxes in the Earth’s outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and GOES (EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell-McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3 – 4.2 MeV energy range at L-shells higher than 3.5 and, moreover, it exhibits an in-phase relationship with the Russell-McPherron effect indicating the former is primarily driven by the latter. Furthermore, the analysis of the past 3 solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) HSS (ICME) occurrence.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437 and from the European Space Agency under the “European Contribution to International Radiation Environment Near Earth (IRENE) Modelling System” activity under ESA Contract No 4000127282/19/NL/IB/gg.</p>


2017 ◽  
Vol 122 (11) ◽  
pp. 11,100-11,108 ◽  
Author(s):  
Pablo S. Moya ◽  
Víctor A. Pinto ◽  
David G. Sibeck ◽  
Shrikanth G. Kanekal ◽  
Daniel N. Baker

Author(s):  
Antoine Brunet ◽  
Angélica Sicard ◽  
Constantinos Papadimitriou ◽  
Didier Lazaro ◽  
Pablo Caron

Electric Orbit Raising (EOR) for telecommunication satellites has allowed significant reduction in on-board fuel mass, at the price of extended transfer durations. These relatively long transfers, which usually span a few months, cross large spans of the radiation belts, resulting in significant exposure of the spacecraft to space radiations. Since they are not very populated, the radiation environment of intermediate regions of the radiation belts is less constrained than on popular orbits such as LEO or GEO on standard environment models. In particular, there is a need for more specific models for the MeV energy range proton fluxes, responsible for solar arrays degradations, and hence critical for EOR missions. As part of the ESA ARTES program, ONERA has developed a specification model of proton fluxes dedicated for EOR missions. This model is able to estimate the average proton fluxes between 60 keV and 20MeV on arbitrary trajectories on the typical durations of EOR transfers. A global statistical model of the radiation belts was extracted from the Van Allen Probes (RBSP) RBSPICE data. For regions with no or low sampling, simulation results from the Salammbô radiation belt model were used. A special care was taken to model the temporal dynamics of the belts on the considered mission durations. A Gaussian Process (GP) model was developed, allowing to compute analytically the distribution of the average fluxes on arbitrary mission durations. Satellites trajectories can be flown in the resulting global distribution, yielding the proton flux spectrum distribution as seen by the spacecraft. We show results of the model on a typical EOR trajectory. The obtained fluxes are compared to the standard AP8 model, the AP9 model, and validated using the THEMIS satellites data.We illustrate the expected e ect on solar cell degradation, where our model is showing an increase of up to 20% degradation prediction compared to AP8.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hayley J. Allison ◽  
Yuri Y. Shprits

Abstract Electrically charged particles are trapped by the Earth’s magnetic field, forming the Van Allen radiation belts. Observations show that electrons in this region can have energies in excess of 7 MeV. However, whether electrons at these ultra-relativistic energies are locally accelerated, arise from betatron and Fermi acceleration due to transport across the magnetic field, or if a combination of both mechanisms is required, has remained an unanswered question in radiation belt physics. Here, we present a unique way of analyzing satellite observations which demonstrates that local acceleration is capable of heating electrons up to 7 MeV. By considering the evolution of phase space density peaks in magnetic coordinate space, we observe distinct signatures of local acceleration and the subsequent outward radial diffusion of ultra-relativistic electron populations. The results have important implications for understanding the origin of ultra-relativistic electrons in Earth’s radiation belts, as well as in magnetized plasmas throughout the solar system.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
S. G. Claudepierre ◽  
J. B. Blake ◽  
A. J. Boyd ◽  
J. H. Clemmons ◽  
J. F. Fennell ◽  
...  

AbstractMeasurements from NASA’s Van Allen Probes have transformed our understanding of the dynamics of Earth’s geomagnetically-trapped, charged particle radiation. The Van Allen Probes were equipped with the Magnetic Electron Ion Spectrometers (MagEIS) that measured energetic and relativistic electrons, along with energetic ions, in the radiation belts. Accurate and routine measurement of these particles was of fundamental importance towards achieving the scientific goals of the mission. We provide a comprehensive review of the MagEIS suite’s on-orbit performance, operation, and data products, along with a summary of scientific results. The purpose of this review is to serve as a complement to the MagEIS instrument paper, which was largely completed before flight and thus focused on pre-flight design and performance characteristics. As is the case with all space-borne instrumentation, the anticipated sensor performance was found to be different once on orbit. Our intention is to provide sufficient detail on the MagEIS instruments so that future generations of researchers can understand the subtleties of the sensors, profit from these unique measurements, and continue to unlock the mysteries of the near-Earth space radiation environment.


Sign in / Sign up

Export Citation Format

Share Document