proton fluxes
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 21)

H-INDEX

28
(FIVE YEARS 2)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Marlon Núñez

The prediction of solar energetic particle (SEP) events may help to improve the mitigation of adverse effects on humans and technology in space. UMASEP (University of Málaga Solar particle Event Predictor) is an empirical model scheme that predicts SEP events. This scheme is based on a dual-model approach. The first model predicts well-connected events by using an improved lag-correlation algorithm for analyzing soft X-ray (SXR) and differential proton fluxes to estimate empirically the Sun–Earth magnetic connectivity. The second model predicts poorly connected events by analyzing the evolution of differential proton fluxes. This study presents the evaluation of UMASEP-10 version 2, a tool based on the aforementioned scheme for predicting all >10 MeV SEP events, including those without associated flare. The evaluation of this tool is presented in terms of the probability of detection (POD), false alarm ratio (FAR) and average warning time (AWT). The best performance was achieved for the solar cycle 24 (i.e., 2008–2019), obtaining a POD of 91.1% (41/45), a FAR of 12.8% (6/47) and an AWT of 2 h 46 min. These results show that UMASEP-10 version 2 obtains a high POD and low FAR mainly because it is able to detect true Sun–Earth magnetic connections.


Author(s):  
Antoine Brunet ◽  
Angélica Sicard ◽  
Constantinos Papadimitriou ◽  
Didier Lazaro ◽  
Pablo Caron

Electric Orbit Raising (EOR) for telecommunication satellites has allowed significant reduction in on-board fuel mass, at the price of extended transfer durations. These relatively long transfers, which usually span a few months, cross large spans of the radiation belts, resulting in significant exposure of the spacecraft to space radiations. Since they are not very populated, the radiation environment of intermediate regions of the radiation belts is less constrained than on popular orbits such as LEO or GEO on standard environment models. In particular, there is a need for more specific models for the MeV energy range proton fluxes, responsible for solar arrays degradations, and hence critical for EOR missions. As part of the ESA ARTES program, ONERA has developed a specification model of proton fluxes dedicated for EOR missions. This model is able to estimate the average proton fluxes between 60 keV and 20MeV on arbitrary trajectories on the typical durations of EOR transfers. A global statistical model of the radiation belts was extracted from the Van Allen Probes (RBSP) RBSPICE data. For regions with no or low sampling, simulation results from the Salammbô radiation belt model were used. A special care was taken to model the temporal dynamics of the belts on the considered mission durations. A Gaussian Process (GP) model was developed, allowing to compute analytically the distribution of the average fluxes on arbitrary mission durations. Satellites trajectories can be flown in the resulting global distribution, yielding the proton flux spectrum distribution as seen by the spacecraft. We show results of the model on a typical EOR trajectory. The obtained fluxes are compared to the standard AP8 model, the AP9 model, and validated using the THEMIS satellites data.We illustrate the expected e ect on solar cell degradation, where our model is showing an increase of up to 20% degradation prediction compared to AP8.


2021 ◽  
Author(s):  
Alessandro Ippolito ◽  
Christina Plainaki ◽  
Gaetano Zimbardo ◽  
Tommaso Alberti ◽  
Stefano Massetti ◽  
...  

<p>We present a study conducted on a number of selected events characterised by a significant increase in the solar proton fluxes measured by FIPS-MESSENGER during the period 2011-2013. For each of them, the magnetic connection between Mercury and the solar corona (Source Surface Field @2.5 R<sub>S</sub>) has been reconstructed, in order to identify the possible source of the accelerated particles on the solar surface. The transport of the magnetic field lines in the heliosphere is here evaluated with a Monte Carlo code that computes a random displacement at each step of the integration along the Parker magnetic field model. Such displacement is proportional to a “local” diffusion coefficient, which is a function of the fluctuation level and magnetic turbulence correlation lengths. The simulation is tailored to the specific events by using the observed values of solar wind velocity and magnetic fluctuation levels.</p>


2021 ◽  
Author(s):  
Evgeny Bondarev ◽  
Alexander E. Koziukov ◽  
Grigory Protopopov ◽  
Pavel A. Chubunov ◽  
Andrey Repin ◽  
...  

2021 ◽  
Author(s):  
Antoine Brunet ◽  
Angélica Sicard ◽  
Constantinos Papadimitriou ◽  
Didier Lazaro

<p>Electric Orbit Raising (EOR) for telecommunication satellites has allowed significant reduction in onboard fuel mass, at the price of extended transfer durations. These relatively long orbital transfers, which can take up to a few months, equatorially cross most of the radiation belts, resulting in significant exposure of the spacecraft to space radiations. Since there are not covered by many spacecrafts, the radiation environment of intermediate regions of the radiation belts is less known than on popular orbits such as LEO or GEO. In particular, there is a need for more specific models for the MeV energy range proton fluxes, responsible for solar arrays degradations. We present a model of proton fluxes dedicated for EOR missions that was developped as part of the ESA ARTES program. This model is able to estimate the average proton fluxes between 60 keV and 10MeV on arbitrary trajectories on the typical durations of EOR transfers. A global statistical model of the radiation belts was extracted from the Van Allen Probes (RBSP) RBSPICE data and enriched by simulation results from the Salammbô radiation belt model were used. A special care was taken to model the temporal dynamics of the proton belt, allowing to compute analytically the distribution of the average fluxes on arbitrary EOR missions.</p>


Sign in / Sign up

Export Citation Format

Share Document