Increase in seismic activity near the footprints of new radiation belts forming after geomagnetic storms

Author(s):  
Nursultan Toyshiev ◽  
Galina Khachikyan ◽  
Beibit Zhumabayev

<p>Recently, attention was drawn [1] that after geomagnetic storms that cause formation of new radiation belts in slot region or in the inner magnetosphere, after about 2 months, there is an increase in seismic activity near the footprints of geomagnetic lines of new radiation belts. More detailed studies showed [2] that on May 30, 1991, an earthquake M=7.0 occurred in Alaska with (54.57N, 161.61E) near the footprint of geomagnetic line L = 2.69 belonging to new radiation belt, which was observed by the CRRES satellite [3] around geomagnetic lines 2<L<3 after geomagnetic storm on March 24, 1991. After geomagnetic storm on September 3, 2012, the Van Allen Probes satellites observed new radiation belt around 3.0≤L≤3.5 [4], and about 2 months later, on October 28, 2012, earthquake M=7.8 occurred off the coast of Canada (52.79N, 132.1W) near the footprint of geomagnetic line L=3.32 belonging to the new radiation belt. Also, Van Allen Probes observed new radiation belt around L=1.5-1.8 after geomagnetic storm on June 23, 2015 [5], and ~2 months later, in September 2015, seismic activity noticeably increased near the footprint of these geomagnetic lines. We consider variations in seismic activity in connection with the strongest geomagnetic storms in 2003 with Dst~- 400 nT (Halloween Storm) and the formation of a belt of relativistic electrons in the inner magnetosphere around L~1.5 existed until the end of 2005 as observed SAMPEX [6]. Analysis of data from the USGS global seismological catalog showed that near the footprint of geomagnetic lines L=1.4-1.6 the number of earthquakes with M≥4.5 increased in 2003-2004 by ~70% compared with their number in two previous years. On the Northern Tien Shan, on December 1, 2003 a strong for the region earthquake M=6.0 occurred on the border of Kazakhstan and China (42.9N, 80.5E) near the footprint of L = 1.63, adjacent to the new radiation belt.</p>

2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2021 ◽  
Author(s):  
Yuri Shprits ◽  
Hayley Allison ◽  
Alexander Drozdov ◽  
Dedong Wang ◽  
Nikita Aseev ◽  
...  

<p>Measurements from the Van Allen Probes mission clearly demonstrated that the radiation belts cannot be considered as a bulk population above approximately electron rest mass. Ultra-relativistic electrons (~>4Mev) form a new population that shows a very different morphology (e.g. very narrow remnant belts) and slow but sporadic acceleration.</p><p>We show that acceleration to multi-MeV energies can not only result of a two-step processes consisting of local heating and radial diffusion but occurs locally due to energy diffusion by whistler mode waves. Local heating appears to be able to transport electrons in energy space from 100s of keV all the way to ultra-relativistic energies (>7MeV). Acceleration to such high energies occurs only for the conditions when cold plasma in the trough region is extremely depleted down to the values typical for the plasma sheet.</p><p>There is also a clear difference between the loss mechanisms at MeV and multi MeV energies The difference between the loss mechanisms at MeV and multi-MeV energies is due to EMIC waves that can very efficiently scatter ultra-relativistic electrons, but leave MeV electrons unaffected.</p><p>We also present how the new understanding gained from the Van Allen Probes mission can be used to produce the most accurate data assimilative forecast. Under the recently funded EU Horizon 2020 Project Prediction of Adverse effects of Geomagnetic storms and Energetic Radiation (PAGER) we will study how ensemble forecasting from the Sun can produce long-term probabilistic forecasts of the radiation environment in the inner magnetosphere.</p>


2017 ◽  
Vol 122 (11) ◽  
pp. 11,100-11,108 ◽  
Author(s):  
Pablo S. Moya ◽  
Víctor A. Pinto ◽  
David G. Sibeck ◽  
Shrikanth G. Kanekal ◽  
Daniel N. Baker

2021 ◽  
Author(s):  
Zhenxia Zhang

<p>Based on data from the ZH-1 satellites, companied with Van Allen Probes and NOAA observations, we analyze the high energy particle evolutions in radiation belts, slot region and SAA during August 2018 major geomagnetic storm (minimum Dst ≈ −190 nT). </p><p>  1) Relativistic electron enhancements in extremely low L-shell regions (reaching L ∼ 3) were observed during storm. Contrary to what occurs in the outer belt, such an intense and deep electron penetration event is rare and more interesting. Strong whistler-mode (chorus and hiss) waves, with amplitudes 81–126 pT, were also observed in the extremely low L-shell simultaneously (reaching L ∼ 2.5) where the plasmapause was suppressed. The bounce-averaged diffusion coefficient calculations support that the chorus waves can play a significantly important role in diffusing and accelerating the 1–3 MeV electrons even in such low L-shells during storms.</p><p>2) A robust evidence is clearly demonstrated that the energetic electron flux with energy 30∼600 keV are increased by 2∼3 times in the inner radiation belt near equator and SAA region on dayside during the major geomagnetic storm. This is the first time that the 100s keV electron flux enhancement is reported to be potentially induced by the interaction with magnetosonic waves in extremely low L-shells (L<2) observed by Van Allen Probes. Proton loss in outer boundary of inner radiation belt takes place in energy of 2~220 MeV extensively during the occurrence of this storm but the loss mechanism is energy dependence which is consistent with some previous studies. It is confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon in energy 30-100 MeV during this storm. This work provides a beneficial help to comprehensively understand the charged particles trapping and loss in SAA region and inner radiation belt dynamic physics.</p>


2020 ◽  
Author(s):  
Zhenxia Zhang ◽  
Lunjin Chen ◽  
Si Liu ◽  
Ying Xiong ◽  
Xinqiao Li ◽  
...  

<p>Based on data from the Van Allen Probes and ZH-1 satellites, relativistic electron enhancements in extremely low L-shell Regions (reaching L~3) were observed during major geomagnetic storm (minimum Dst`-190 nT).  Contrary to what occurs in the outer belt, such an intense and deep electron penetration event is rare and more interesting. Strong whistler-mode (chorus and hiss) waves, with amplitudes 81-126 pT, were also observed in the extremely low L-shell simultaneously (reaching L~2.5) where the plasmapause was suppressed. The bounce-averaged diffusion coefficient calculations support that the chorus waves can play a significantly important role in diffusing and accelerating the 1-3 MeV electrons even in such low L-shells during storms. This is the first time that the electron acceleration induced by chorus waves in the extremely low L-shell region is reported. This new finding will help to deeply understand the electron acceleration process in radiation belt physics.</p>


2021 ◽  
Vol 44 ◽  
pp. 7-11
Author(s):  
Elena Antonova ◽  

We analyzed the problems of formation of the outer radiation belt (ORB) taking into consideration the latest changes in our understanding of the high-latitude magnetospheric topology. This includes strong evidence that the auroral oval maps to the outer part of the ring current, meanwhile the ORB polar boundary maps inside the auroral oval. Our analysis also includes the variation of the plasma pressure distribution and the time of the acceleration of relativistic electrons during geomagnetic storm. It is shown that the maximum of ORB is formed after the geomagnetic storm in the region of plasma pressure maximum. The position of this maximum agrees with the prediction of the ORB formation theory based on the analysis of ring current development during storm. We emphasize the role of adiabatic processes in the ORB dynamics and the importance of the substorm injections during storm recovery phase for the formation of enhanced fluxes of ORB electrons after the storm.


2021 ◽  
Author(s):  
Dedong Wang ◽  
Yuri Shprits ◽  
Alexander Drozdov ◽  
Nikita Aseev ◽  
Irina Zhelavskaya ◽  
...  

<p>Using the three-dimensional Versatile Electron Radiation Belt (VERB-3D) code, we perform simulations to investigate the dynamic evolution of relativistic electrons in the Earth’s outer radiation belt. In our simulations, we use data from the Geostationary Operational Environmental Satellites (GOES) to set up the outer boundary condition, which is the only data input for simulations. The magnetopause shadowing effect is included by using last closed drift shell (LCDS), and it is shown to significantly contribute to the dropouts of relativistic electrons at high $L^*$. We validate our simulation results against measurements from Van Allen Probes. In long-term simulations, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modeling of megaelectron volt (MeV) electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high‐latitude chorus waves can tip the balance between acceleration and loss toward acceleration, or alternatively, the increase in high‐latitude waves can result in a net loss of MeV electrons. Variations in high‐latitude chorus may account for some of the variability of MeV electrons. </p><p>Our simulation results for the NSF GEM Challenge Events show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. We also perform simulations for the COSPAR International Space Weather Action Team (ISWAT) Challenge for the year 2017. The COSPAR ISWAT is a global hub for collaborations addressing challenges across the field of space weather. One of the objectives of the G3-04 team “Internal Charging Effects and the Relevant Space Environment” is model performance assessment and improvement. One of the expected outputs is a more systematic assessment of model performance under different conditions. The G3-04 team proposed performing benchmarking challenge runs. We ‘fly’ a virtual satellite through our simulation results and compare the simulated differential electron fluxes at 0.9 MeV and 57.27 degrees local pitch-angle with the fluxes measured by the Van Allen Probes. In general, our simulation results show good agreement with observations. We calculated several different matrices to validate our simulation results against satellite observations.</p>


2020 ◽  
Vol 125 (10) ◽  
Author(s):  
H. Wu ◽  
T. Chen ◽  
V. V. Kalegaev ◽  
M. I. Panasyuk ◽  
N. A. Vlasova ◽  
...  

2019 ◽  
Vol 124 (8) ◽  
pp. 6524-6540 ◽  
Author(s):  
Megha Pandya ◽  
Veenadhari Bhaskara ◽  
Yusuke Ebihara ◽  
Shrikanth G. Kanekal ◽  
Daniel N. Baker

Sign in / Sign up

Export Citation Format

Share Document