A Bayesian approach to infer ice sheet temperature in Antarctica from satellite observations

Author(s):  
Marion Leduc-Leballeur ◽  
Catherine Ritz ◽  
Giovanni Macelloni ◽  
Ghislain Picard

<p>The actual temperature profile is a determinant of ice rheology, which controls ice deformation and flow, and sliding over the underlying bedrock. Importantly, the ice flow in turn affects its temperature profile through strain heating, which makes observed temperature profiles a powerful input for ice sheet model validation.</p><p><span>Up to now temperature profile was available in few boreholes or from glaciological models. Recently, </span><span>Macelloni et al. (2016)</span><span> opened up new opportunities for probing ice </span><span>temperature</span><span> from space with the low-frequency passive sensors. </span><span>Indeed</span><span>, at L-band frequency, the very low absorption of ice and the low scattering by particles (grain size, bubbles in ice) allow a large penetration in the dry snow and ice (several hundreds of meters). Macelloni et al. (2019) performed the first retrieval of the ice sheet temperature in Antarctica by using the European Space Agency (ESA)’s Soil Moisture and Ocean Salinity (SMOS) L-band observations. The</span><span>y used </span><span>the</span><span> minimization of the difference between SMOS brightness temperature and microwave emission model simulations that include</span><span>s</span><span> a glaciological model.</span></p><p><span>Here, in the framework of the ESA 4D-Antarctica project, we propose a new method based on a Bayesian approach in order to improve the accuracy of the retrieved ice temperature and to provide an uncertainty estimation along the profiles. As a first step, a one-dimensional ice temperature profile model (Robin 1955) is used, which limits the retrieval to the Antarctic Plateau. Then, the new temperature emulator based on the three-dimensional glaciological GRISLI (Quiquet et al., 2018) will be used to enable retrievals over the entire continent (cf. Ritz’s presentation in this session for the GRISLI emulator </span><span>description</span><span>).</span></p><p><span>The Bayesian inference takes as free parameters: </span><span>ice thickness, </span><span>surface ice temperature, snow accumulation and geothermal heat flux (GHF). Their prior probability distribution is defined as normal, centered around a priori values taken from literature, and truncated to stay in a realistic range. The observed brightness temperature distribution is normal and a normal likelihood function is used to quantify the matching between the observed and simulated brightness temperature. The parameter space investigation is achieved through a Markov Chain Monte Carlo (MCMC) method. Here, the differential evolution adaptive Metropolis (DREAM) algorithm is used, which runs multiple different Markov chains in parallel and uses a discrete proposal distribution to evolve the sampler to the posterior distribution </span><span>(</span><span>Laloy and Vrugt, 2012).</span></p><p>For each SMOS brightness temperature observation, 1000 iterations are run on 5 parallel chains. The 2500 first iterations are discarded (aka. burn-in) and only the last 2500 are used for the final ice temperature profile estimation. The posterior probability distribution captures the most likely parameter set (i.e. a surface temperature, snow accumulation and GHF combination), and so, the most likely ice temperature profiles associated to this SMOS observation. It also provides the standard deviation which is an accurate estimate of the temperature uncertainty along the depth obtained with the method.</p>

2018 ◽  
Vol 10 (9) ◽  
pp. 1451 ◽  
Author(s):  
Alexandre Roy ◽  
Marion Leduc-Leballeur ◽  
Ghislain Picard ◽  
Alain Royer ◽  
Peter Toose ◽  
...  

Detailed angular ground-based L-band brightness temperature (TB) measurements over snow covered frozen soil in a prairie environment were used to parameterize and evaluate an electromagnetic model, the Wave Approach for LOw-frequency MIcrowave emission in Snow (WALOMIS), for seasonal snow. WALOMIS, initially developed for Antarctic applications, was extended with a soil interface model. A Gaussian noise on snow layer thickness was implemented to account for natural variability and thus improve the TB simulations compared to observations. The model performance was compared with two radiative transfer models, the Dense Media Radiative Transfer-Multi Layer incoherent model (DMRT-ML) and a version of the Microwave Emission Model for Layered Snowpacks (MEMLS) adapted specifically for use at L-band in the original one-layer configuration (LS-MEMLS-1L). Angular radiometer measurements (30°, 40°, 50°, and 60°) were acquired at six snow pits. The root-mean-square error (RMSE) between simulated and measured TB at vertical and horizontal polarizations were similar for the three models, with overall RMSE between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to better reproduce the observed TB at higher incidence angles (50° and 60°) and at horizontal polarization. The similar results obtained between WALOMIS and DMRT-ML suggests that the interference phenomena are weak in the case of shallow seasonal snow despite the presence of visible layers with thicknesses smaller than the wavelength, and the radiative transfer model can thus be used to compute L-band brightness temperature.


2020 ◽  
Vol 14 (9) ◽  
pp. 2809-2817
Author(s):  
Julie Z. Miller ◽  
David G. Long ◽  
Kenneth C. Jezek ◽  
Joel T. Johnson ◽  
Mary J. Brodzik ◽  
...  

Abstract. Enhanced-resolution L-band brightness temperature (TB) image time series generated from observations collected over the Greenland Ice Sheet by NASA's Soil Moisture Active Passive (SMAP) satellite are used to map Greenland's perennial firn aquifers from space. Exponentially decreasing L-band TB signatures are correlated with perennial firn aquifer areas identified via the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-Channel Coherent Radar Depth Sounder (MCoRDS) that was flown by NASA's Operation IceBridge (OIB) campaign. An empirical algorithm to map extent is developed by fitting these signatures to a set of sigmoidal curves. During the spring of 2016, perennial firn aquifer areas are found to extend over ∼66 000 km2.


2014 ◽  
Vol 8 (3) ◽  
pp. 915-930 ◽  
Author(s):  
L. Brucker ◽  
E. P. Dinnat ◽  
L. S. Koenig

Abstract. Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.


2020 ◽  
Author(s):  
Julie Z. Miller ◽  
David G. Long ◽  
Kenneth .C Jezek ◽  
Joel T. Johnson ◽  
Mary J. Brodzik ◽  
...  

Abstract. Enhanced-resolution L-band brightness temperature (TB) image time series collected over the Greenland ice sheet by NASA’s Soil Moisture Active Passive (SMAP) satellite are used to map Greenland’s perennial firn aquifers from space. Exponentially decreasing L-band TB signatures are correlated with perennial firn aquifer areas identified via the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-Channel Coherent Radar Depth Sounder (MCoRDS) flown by NASA’s Operation IceBridge (OIB) campaign. An empirical algorithm to map extent is developed by fitting these signatures to a set of sigmoidal curves. During the spring of 2016, perennial firn aquifer areas are found to extend over ~66,000 km2.


2018 ◽  
Vol 10 (9) ◽  
pp. 1391 ◽  
Author(s):  
Lei Zheng ◽  
Chunxia Zhou ◽  
Ruixi Liu ◽  
Qizhen Sun

Antarctic surface snowmelt is sensitive to the polar climate. The ascending and descending passes of the Advanced Microwave Scanning Radiometer for Earth Observing System Sensor (AMSR-E) observed the Antarctic ice sheet in the afternoon (the warmest period) and at midnight (a cold period), enabling us to make full use of the diurnal amplitude variations (DAV) in brightness temperature (Tb) to detect snowmelt. The DAV in vertically polarized 36.5 GHz Tb (DAV36V) is extremely sensitive to liquid water and can reduce the effects of the structural changes in snowpacks during melt seasons. A set of controlled experiments based on the microwave emission model of layered snow (MEMLS) were conducted to study the changes of the vertically polarized 36.5 GHz Tb (Δ36V) during the transitions from dry to wet snow regimes. Results of the experiments suggest that 9 K can be used as a DAV36V threshold to recognize snowmelt. The analyses of snowmelt suggest that the Antarctic ice sheet began to melt in November and became almost completely frozen in late March of the following year. The total cumulative melt area from 2002 to 2011 was 2.44 × 106 km2, i.e., 17.58% of the Antarctic ice sheet. The annual cumulative melt area showed considerable fluctuations, with a significant (above 90% confidence level) drop of 5.24 × 104 km2/year in the short term. Persistent snowmelt (i.e., melt that continues for at least three days) detected by AMSR-E and hourly air temperatures (Tair) were very consistent. Though melt seasons became longer in the western Antarctic Peninsula and the Shackleton Ice Shelf, Antarctica was subjected to considerable decreases in duration and melting days in stable melt areas, i.e., −0.64 and −0.81 days/year, respectively. Surface snowmelt in Antarctica decreased temporally and spatially from 2002 to 2011.


2020 ◽  
Author(s):  
Seyedmohammad Mousavi ◽  
Andreas Colliander ◽  
Julie Z. Miller ◽  
John S. Kimball

Abstract. The polar ice sheets have undergone unprecedented melt events in the recent past, which have consequences for ice sheet mass balance, stability, and sea level. In this study, we employed L-band (1.4 GHz) brightness temperature observations collected by NASA's Soil Moisture Active Passive (SMAP) mission to investigate the extent, duration and intensity of melt events on the Antarctic Ice Sheet from 2015 to 2020. Satellite microwave measurements have long been used to detect melt events because of their sensitivity to the presence of liquid water in snow and ice. The observed microwave response depends on the sensor measurement frequency. Our hypothesis for this study is that the relatively long wavelength SMAP observations can detect a wider range of surface wetness conditions relative to shorter wavelength microwave observations that attain signal saturation at relatively lower wetness levels and within shallower surface layers. SMAP provides nearly all-weather surface monitoring over all of Antarctica twice daily with morning and evening overpasses at about 40 km spatial resolution. We applied an empirical threshold algorithm using horizontally and vertically polarized microwave brightness temperature differences to detect surface melt events over Antarctica from 2015 through 2020. The results show that the SMAP empirical algorithm can be used to detect melt extent and duration, and the geophysical model-based algorithm can be used to detect snow wetness, which can be used as an indicator of melt intensity. Analysis of the melt seasons between 2015 and 2020 show that the even though the melt extent in 2019–2020 was not as large as during the 2015–2016 melt season, it was significantly more intense, particularity on the West Antarctic Ice Sheet.


2019 ◽  
Vol 11 (24) ◽  
pp. 3037
Author(s):  
Lingjia Gu ◽  
Xintong Fan ◽  
Xiaofeng Li ◽  
Yanlin Wei

At present, passive microwave remote sensing is the most efficient method to estimate snow depth (SD) at global and regional scales. Farmland covers 46% of Northeast China and accurate SD retrieval throughout the whole snow season has great significance for the agriculture management field. Based on the results of the statistical analysis of snow properties in Northeast China from December 2017 to January 2018, conducted by the China snow investigation project, snow characteristics such as snow grain size (SGS), snow density, snow thickness, and temperature of the layered snowpack were measured and analyzed in detail. These characteristics were input to the microwave emission model of layered snowpacks (MEMLS) to simulate the brightness temperature (TB) time series of snow-covered farmland in the periods of snow accumulation, stabilization, and ablation. Considering the larger SGS of the thick depth hoar layer that resulted in a rapid decrease of simulated TBs, effective SGS was proposed to minimize the simulation errors and ensure that the MEMLS can be correctly applied to satellite data simulation. Statistical lookup tables (LUTs) for MWRI and AMSR2 data were generated to represent the relationship between SD and the brightness temperature difference (TBD) at 18 and 36 GHz. The SD retrieval results based on the LUT were compared with the actual SD and the SD retrieved by Chang’s algorithm, Foster’s algorithm, the standard MWRI algorithm, and the standard AMSR2 algorithm. The results demonstrated that the proposed algorithm based on the statistical LUT achieved better accuracy than the other algorithms due to its incorporation of the variation in snow characteristics with the age of snow cover. The average root mean squared error of the SD for the whole snow season was approximately 3.97 and 4.22 cm for MWRI and AMSR2, respectively. The research results are beneficial for monitoring SD in the farmland of Northeast China.


2020 ◽  
Vol 66 (257) ◽  
pp. 509-519 ◽  
Author(s):  
Laura Mony ◽  
Jason L. Roberts ◽  
Jacqueline A. Halpin

AbstractGeothermal heat flux (GHF) is an important control on the dynamics of Antarctica's ice sheet because it controls basal melt and internal deformation. However, it is hard to estimate because of a lack of in-situ measurements. Estimating GHF from ice-borehole temperature profiles is possible by combining a heat-transfer equation and the physical properties of the ice sheet in a numerical model. In this study, we truncate ice-borehole temperature profiles to determine the minimum ratio of temperature profile depth to ice-sheet thickness required to produce acceptable GHF estimations. For Law Dome, a temperature profile that is within 60% of the local ice thickness is sufficient for an estimation that is within approximately one median absolute deviation of the whole-profile GHF estimation. This result is compared with the temperature profiles at Dome Fuji and the West Antarctic Ice Sheet divide which require a temperature profile that is 80% and more than 91% of the ice thickness, respectively, for comparable accuracy. In deriving GHF median estimations from truncated temperature profiles, it is possible to discriminate between available GHF models. This is valuable for assessing and constraining future GHF models.


2021 ◽  
Author(s):  
Julie Z. Miller ◽  
Riley Culberg ◽  
David G. Long ◽  
Christopher A. Shuman ◽  
Dustin M. Schroeder ◽  
...  

Abstract. Perennial firn aquifers are subsurface meltwater reservoirs formed from a water-saturated firn layer. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting and high snow accumulation. Widespread perennial firn aquifers have been identified within the Greenland Ice Sheet (GrIS) via field expeditions, airborne ice-penetrating radar surveys, and satellite microwave sensors. In contrast, ice slabs are nearly-continuous ice layers that form on spatial scales of kilometers as a result of surface and subsurface water-saturated snow and firn layers sequentially refreezing following multiple melting seasons. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting, but in areas where snow accumulation is at least ~25 % lower as compared to perennial firn aquifer areas. Widespread ice slabs have recently been identified within the GrIS via field expeditions and airborne ice-penetrating radar surveys, specifically in areas where perennial firn aquifers typically do not form. However, ice slabs have yet to be inferred from space. Together, these two ice sheet features represent distinct, but related, sub-facies within the broader percolation facies of the GrIS that can be defined primarily by differences in snow accumulation, which influences the englacial hydrology and thermal characteristics of firn layers at depth. Here, for the first time, we use enhanced-resolution vertically-polarized L-band brightness temperature (TBV) imagery (2015–2019) generated using observations collected over the GrIS by NASA’s Soil Moisture Active Passive (SMAP) satellite to map both perennial firn aquifer and ice slab areas as a continuous system over the percolation facies. We also map “perched” firn aquifer areas, which we define as areas where shallow water-saturated firn layers transiently form on top of buried ice slabs, or other semi-impermeable layers within the snow and firn. An empirical algorithm previously developed to map the extent of Greenland’s perennial firn aquifers via fitting exponentially decreasing temporal L-band signatures to a set of sigmoidal curves is recalibrated to also map the extent of ice slab and perched firn aquifer areas using airborne ice-penetrating radar surveys collected by NASA’s Operation Ice Bridge (OIB) campaigns (2010–2017). Our SMAP-derived maps show that between 2015 and 2019, perennial firn aquifer areas extended over ~64,000 km2, ice slab areas extended over ~76,000 km2, and perched firn aquifer areas extended over ~37,000 km2. Combined together, these three sub-facies are the equivalent of ~24 % of the percolation facies of the GrIS. As Greenland’s climate continues to warm, and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of each of these sub-facies using satellite L-band microwave radiometry has significant implications for understanding ice sheet-wide variability in englacial firn hydrology resulting in meltwater-induced hydrofracturing and accelerated ice flow as well as high-elevation run-off that can impact the mass balance and stability of the GrIS.


Sign in / Sign up

Export Citation Format

Share Document