Climate and land-use effects on hydrological and vegetation signals during the last three millennia in southwestern Morocco

Author(s):  
Asmae Baqloul ◽  
Enno Schefuß ◽  
Martin Kölling ◽  
Lydie Dupont ◽  
Jeroen Groeneveld ◽  
...  

<p>The southwest of Morocco is considered to be an area of refuge within the Mediterranean region, hosting the endemic tropical Argan tree. This region is presently subject to severe droughts, desertification, and land degradation, and likely facing increased climate variability and socio-economic stress in the future. Here, we use the stable hydrogen and carbon isotope composition (δD and δ13C) of plant-waxes in a high-resolution marine sediment core (GeoB8601-3) collected off Cape Ghir in southwestern Morocco, in combination with published data on pollen and XRF element ratios from the same archive. We aim to reconstruct the hydroclimate and vegetation history during the last 3000 years. Stable carbon isotope compositions of leaf waxes (δ13Cwax) show that natural vegetation in southwestern Morocco consists of C3 plants. Minor variations in δ13Cwax were positively correlated to changes in stable hydrogen isotope compositions of leaf waxes (δDwax) before 700 CE. Changes in rainfall amounts and water use efficiency indicate a clear vegetation response to precipitation changes and thus to climate forcing. After 700 CE, δDwax and δ13Cwax became de-coupled suggesting that the plant wax discharge and their isotope signals were no longer solely controlled by climate; the waxes likely mainly originate from the lowlands and carry an enriched (dry) δD signal but a depleted 13C signature. The depletion of δ13Cwax correlates with the increase of Argan pollen concentration in the record. The period between ~700 and 900 CE coincides with the Arabization of Morocco which had an impact on the demographic composition of the country leading to new agricultural habits and, as a result, on the land-use triggering a higher erosion of lowland material by the Souss River.</p>

The Holocene ◽  
2021 ◽  
pp. 095968362098805
Author(s):  
Asmae Baqloul ◽  
Enno Schefuß ◽  
Martin Kölling ◽  
Lydie Dupont ◽  
Jeroen Groeneveld ◽  
...  

The southwest of Morocco is considered to be an area of refuge within the Mediterranean region, hosting the endemic tropical Argan tree. This region is presently subject to severe droughts, desertification and land degradation, and likely facing increased climate variability and socio-economic stress in the future. Here, we use the stable hydrogen and carbon isotope composition (δD and δ13C) of plant-waxes in a high-resolution marine sediment core (GeoB8601-3) collected off Cape Ghir in southwestern Morocco, in combination with published data on pollen and XRF element ratios from the same archive. We aim to reconstruct the hydroclimate and vegetation history during the last 3000 years. Stable carbon isotope compositions of leaf waxes (δ13Cwax) show that natural vegetation in southwestern Morocco consists of C3 plants. Minor variations in δ13Cwax were positively correlated to changes in stable hydrogen isotope compositions of leaf waxes (δDwax) before 700 CE. Changes in rainfall amounts and water use efficiency indicate a clear vegetation response to precipitation changes and thus to climate forcing. After 700 CE, δDwax and δ13Cwax became de-coupled suggesting that the plant wax discharge and their isotope signals were no longer solely controlled by climate; the waxes likely mainly originate from the lowlands and carry an enriched (dry) δD signal but a depleted 13C signature. The depletion of δ13Cwax correlates with the increase of Argan pollen concentration in the record. The period between ~700 and 900 CE coincides with the Arabization of Morocco which had an impact on the demographic composition of the country leading to new agricultural habits and, as a result, on the land-use triggering a higher erosion of lowland material by the Souss River.


2005 ◽  
pp. 239-254
Author(s):  
Luiz Antonio Martinelli ◽  
Plinio Barbosa de Camargo ◽  
Marcelo Corrêia Bernardes ◽  
Jean-Pierre Henry Balbaud Ometto

Radiocarbon ◽  
2019 ◽  
Vol 61 (4) ◽  
pp. 885-903 ◽  
Author(s):  
Rūta Barisevičiūtė ◽  
Evaldas Maceika ◽  
Žilvinas Ežerinskis ◽  
Jonas Mažeika ◽  
Laurynas Butkus ◽  
...  

ABSTRACTIn this study, we examined how land use and urbanization changes in adjacent areas affected biological productivity and carbon cycling in a lake ecosystem over 100 years and how these changes are reflected in carbon isotope variations. We performed radiocarbon (14C) activity and stable carbon isotope ratio analysis in two organic fractions: humin and humic acids of lake sediment. Additionally, we performed pigment and diatom analysis and determined the carbonate and organic matter (OM) content in sediments. Over the last century, the estimated 14C reservoir age in both sediment organic fractions varied from 1136 ± 112 yr to 5733 ± 122 yr. The increase in the reservoir age by 1175 ± 111 yr was related with higher inputs of pre-aged organic carbon and 14C depleted hard water due to the opening of the channel connecting two lakes. Nuclear weapons tests caused an increase in the reservoir age of up to 5421 ± 135 yr and 5733 ± 122 yr in humin and humic acids, respectively. 13C values in the humic acid fraction showed a tendency to decrease, depending on the content of autochthonous versus allochthonous OM in sediments, while changes in the sources of OM had a minor impact on the stable carbon isotope composition in the humin fraction.


2019 ◽  
Vol 498 (1) ◽  
pp. 101-127 ◽  
Author(s):  
Yuri D. Zakharov ◽  
Vladimir B. Seltser ◽  
Mikheil V. Kakabadze ◽  
Olga P. Smyshlyaeva ◽  
Peter P. Safronov

AbstractOxygen and carbon isotope data from well-preserved mollusc shells and belemnite rostra are presented from the Jurassic (Bathonian, Callovian and Tithonian) and Cretaceous (Aptian, Turonian, Campanian and Maastrichtian) of the Saratov–Samara Volga region, Russia. New data provide information on the resulting trends in palaeoclimate and in palaeoceanography and palaeoecology in the late Mesozoic. Palaeotemperatures calculated from Jurassic–Cretaceous benthic (bivalves and gastropods) and semi-pelagic (ammonites) molluscs are markedly higher than those calculated from pelagic belemnites using oxygen isotopes. This is probably due to various mollusc groups of the Saratov–Samara area inhabiting different depths in the marine basins (e.g. epipelagic v. mesopelagic). Our isotope records, combined with a review of previously published data from shallow-water fossils from the Saratov–Samara area and adjacent regions permits us to infer temperature trends for the epipelagic zone from the Middle Jurassic to Cretaceous in the Russian Platform–Caucasus area. The Jurassic–Cretaceous belemnites from the Russian Platform and the Caucasus have a lower δ13C signature than the contemporaneous brachiopods, bivalves and ammonites.


Sign in / Sign up

Export Citation Format

Share Document