reservoir age
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 29)

H-INDEX

39
(FIVE YEARS 5)

Radiocarbon ◽  
2021 ◽  
pp. 1-12
Author(s):  
Weijian Zhou ◽  
Yuda Chui ◽  
Ling Yang ◽  
Peng Cheng ◽  
Ning Chen ◽  
...  

ABSTRACT Lacustrine sediments are important archives for paleoclimate research, but there are evident carbon reservoir effects. Radiocarbon (14C) ages of lake sediments must be corrected for these effects before applying them to paleoclimate research. The authors review the lacustrine research from the last 20 years from different climatic regions in China, and systematically investigate the 14C age and correction methods used in the studies of 81 lakes. It is found that the climate-vegetation cover and distribution of carbonate around lakes are dominant factor controlling radiocarbon reservoir effects. In eastern China, the average 14C reservoir age is about 500 14C years and is associated with relatively dense vegetation. However, in northwest China and Qinghai-Tibet Plateau, widespread carbonate bedrock may markedly increase the radiocarbon reservoir age which frequently is about 1500 and 2500 14C years. A piecewise linear regression model provides more reliable 14C reservoir age correction that accounts for sedimentary facies and sedimentation rate changes. It is worth mentioning that when analyzing 14C ages deviated greatly from time sequence, the age anomalies may indicate important effects relevant to the study of climate and environmental changes.


2021 ◽  
Vol 17 (4) ◽  
pp. 1701-1725
Author(s):  
Edouard Bard ◽  
Timothy J. Heaton

Abstract. We assess the methodology of the so-called 14C plateau tuning (PT) technique used to date marine sediment records and determine 14C marine reservoir ages (MRAs) as recently reviewed by Sarnthein et al. (2020). The main identified problems are linked to the assumption of constant MRA during 14C age plateaus; the lack of consideration of foraminifera abundance changes coupled to bioturbation that can create spurious plateaus in marine sediments; the assumption that plateaus have the same shapes and durations in atmospheric and oceanic records; the implication that atmospheric 14C / 12C peaked instantaneously from one plateau to the next; that the 14C plateaus represent 82 % of the total time spent between 14 000 and 29 000 cal yr BP, whereas during the remaining 18 % of the time, the radiocarbon clock was running almost 5 times faster than the radioactive decay; that the sparsity, combined with the level of analytical uncertainties and additional noise, in both atmospheric and marine data do not currently allow one to reliably or robustly identify plateaus (should they exist) beyond 15 000 cal yr BP; and that the determination and identification of plateaus in the deep-sea cores is reliant upon significant changes in sedimentation rate within those marine sediments which are, a priori, unknown and are not verified with an independent method. The concerns we raise are supported and strengthened with carbon cycle box model experiments and statistical simulations of pseudo-atmospheric and pseudo-marine records, allowing us to question the ability to identify and tune 14C age plateaus in the context of noisy and sparse data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Natalie Schroeter ◽  
Jens Mingram ◽  
Julia Kalanke ◽  
Stefan Lauterbach ◽  
Rik Tjallingii ◽  
...  

Lake sediments provide excellent archives to study past environmental and hydrological changes at high temporal resolution. However, their utility is often restricted by chronological uncertainties due to the “reservoir age effect” (RAE), a phenomenon that results in anomalously old radiocarbon ages of total organic carbon (TOC) samples that is mainly attributed to the contribution of pre-aged carbon from aquatic organisms. Although the RAE is a well-known problem especially in high altitude lakes, detailed studies analyzing the temporal variations in the contribution of terrestrial and aquatic organic carbon (OC) on the RAE are scarce. This is partially due to the complexity of isolating individual compounds for subsequent compound-specific radiocarbon analysis (CSRA). We developed a rapid method for isolating individual short-chain (C16 and C18) and long-chain (>C24) saturated fatty acid methyl esters (FAMEs) by using high-pressure liquid chromatography (HPLC). Our method introduces only minor contaminations (0.50 ± 0.22 µg dead carbon on average) and requires only few injections (≤10), therefore offering clear advantages over traditional preparative gas chromatography (prep-GC). Here we show that radiocarbon values (Δ14C) of long-chain FAs, which originate from terrestrial higher plant waxes, reflect carbon from a substantially pre-aged OC reservoir, whereas the Δ14C of short-chain FAs that originate from aquatic sources were generally less pre-aged. 14C ages obtained from the long-chain FAs are in closer agreement with 14C ages of the corresponding bulk TOC fraction, indicating a high control of pre-aged terrestrial OC input from the catchment on TOC-derived 14C ages. Variations in the age offset between terrestrial and aquatic biomarkers are related to changes in bulk sediment log(Ti/K) that reflect variations in detrital input from the catchment. Our results indicate that the chronological offset between terrestrial and aquatic OC in this high-altitude catchment is mainly driven by temporal variations in the mobilization of pre-aged OC from the catchment. In conclusion, to obtain accurate and process-specific lake sediment chronologies, attention must be given to the temporal dynamics of the RAE. Variations in the apparent ages of aquatic and terrestrial contributions to the sediment and their mass balance can substantially alter the reservoir age effect.


Radiocarbon ◽  
2021 ◽  
pp. 1-18
Author(s):  
Guillaume Soulet ◽  
Vittorio Maselli

ABSTRACT Quantifying the local marine reservoir age (ΔR) and its change over time is critical for precise radiocarbon calibration of marine samples and for the study of the ocean carbon cycle. ΔR values are scarce for the African coast facing the Indian Ocean, and the few values available were obtained from pre-bomb shells collected during the 19th century. Here, the ΔR value for calibrated year 1110 ± 25 (1σ) CE was reconstructed from radiocarbon dating and Bayesian analysis of marine and terrestrial materials coexisting in a tsunami deposit discovered in Pangani Bay (Tanzania, western Indian Ocean coast). The reconstructed ΔR of –8 ± 40 (1σ, n = 3) is similar to pre-bomb regional estimates and provides new information to investigate regional ΔR change over time. The Bayesian analysis of the dated samples revises the age of the tsunami event found in Pangani Bay to 1064–1157 cal CE (95.4% confidence level) or 1110 ± 25 (1σ) cal CE, about one century younger compared to the previous estimate. Our results indicate that the new ΔR value and the proposed calibration approach can be used to refine existing chronologies in the region, with implications for paleo-environmental reconstructions and archaeological studies of Early Swahili societies.


2021 ◽  
pp. 101178
Author(s):  
Christina Treinen-Crespo ◽  
Loïc Barbara ◽  
Julio A. Villaescusa ◽  
Sabine Schmidt ◽  
Ann Pearson ◽  
...  

Radiocarbon ◽  
2021 ◽  
pp. 1-16
Author(s):  
Anders Fischer ◽  
Jesper Olsen

ABSTRACT The Nekselø Wickerwork provides an unusually solid estimate on the marine reservoir age in the Holocene. The basis for this result is a 5200-year-old fish weir, built of hazel wood with a brief biological age of its own. Oysters settled on this construction. They had lived only for a short number of years when the fence capsized and was covered in mud and the mollusks suffocated. Based on the difference in radiocarbon (14C) age between accelerator mass spectrometry (AMS) samples of oyster shells and wood, respectively, the marine reservoir age for this site is estimated to 273 ± 18 14C years. Re-evaluations of previously produced data from geological and archaeological sites of Holocene date in the Danish archipelago indicate marine reservoir ages in the same order as that of the Wickerwork. Consequently, we recommend the use of the new value, rather than the ca. 400 14C years hitherto favored, when correcting for the dietary induced reservoir effect in radiocarbon dates of humans and animals from the Late Mesolithic and Early Neolithic periods of this region.


2021 ◽  
Author(s):  
Edouard Bard ◽  
Timothy J. Heaton

Abstract. As an extended comment on the paper by Sarnthein et al. (2020), we express strong reservations about the methodology of the so-called 14C plateau tuning (PT) technique used to date marine sediment records and its implications on the determination of 14C marine reservoir ages (MRA). The main problems are linked to: the assumption of constant MRA during 14C-age plateaus; the lack of consideration of foraminifera abundance changes coupled to bioturbation that can create spurious plateaus in marine sediments; the assumption that plateaus have the same shapes and durations in atmospheric and oceanic records; the implication that atmospheric 14C/12C peaked instantaneously from one plateau to the next; that the 14C plateaus represent 82 % of the total time spent between 14,000 and 29,000 cal yr BP, whereas during the remaining 18 % of the time, the radiocarbon clock was running almost 5 times too fast; that the sparsity, combined with the level of analytical uncertainties and additional noise, in both atmospheric and marine data do not currently allow one to reliably or robustly identify plateaus (should they exist) beyond 15,000 cal yr BP; and that the determination and identification of plateaus is reliant upon significant changes in sedimentation rate within the marine sediments which are, a priori, unknown and are not verified with an independent method. The concerns we raise are supported and strengthened with carbon cycle box-model experiments and statistical simulations of pseudo-atmospheric and pseudo-marine records, allowing us to test the ability to identify and tune 14C-age plateaus, in the context of noisy and sparse data.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kosuke Ota ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi ◽  
Shinya Yamamoto ◽  
Toshihiro Miyajima

Lakes are sensitive recorders of anthropogenic activities, as human society often develops in their vicinity. Lake sediments thus have been widely used to reconstruct the history of environmental changes in the past, anthropogenic, or otherwise, and radiocarbon dating provides chronological control of the samples. However, specific values of radiocarbon in different carbon reservoirs due to the different pathways of radiocarbon from the upper atmosphere to the lake, called the radiocarbon reservoir age, is always difficult to evaluate because of dynamic processes in and around lakes. There are few systematic studies on radiocarbon reservoir ages for lakes owing to the complex radiocarbon transfer processes for lakes. Here, we investigate lake waters of the Fuji Five Lakes with monthly monitoring of the radiocarbon reservoir effects. Radiocarbon from dissolved inorganic carbon (DIC) for groundwater and river water is also measured, with resulting concentrations (Δ14C) at their lowest at Lake Kawaguchi in August 2018 (–122.4 ± 3.2‰), and at their highest at Lake Motosu in January 2019 (–22.4 ± 2.5‰), despite a distance of 25 km. However, winter values in both lakes show similar trends of rising Δ14C (about 20‰). Our lake water DIC Δ14C results are compared to previously published records obtained from sediments in Lake Motosu and Lake Kawaguchi. These suggest that total organic carbon and compound-specific radiocarbon found in sediments are heavily influenced by summer blooms of aquatic organisms that fix DIC in water. Thus, future studies to conduct similar analyses at the various lakes would be able to provide further insights into the carbon cycle around inland water, namely understanding the nature of radiocarbon reservoir ages.


2021 ◽  
Vol 48 (1) ◽  
pp. 16-30
Author(s):  
Maurice Ndeye ◽  
Demba Kebe ◽  
Matar Sene ◽  
Adama Harouna Athie

Abstract The prehistoric settlement of the west coast of the Senegalese-Mauritanian basin is established from archaeological remains and coal samples collected, sometimes in a stratigraphic context. However, the chronology issued, in the Before Present (BP) age, does not take into account the taphonomic context of the sites and the local reservoir age. Therefore, this article revisits the chronologies obtained based on the 14C literature and dating(s) acquired. Changes in time and duration of human occupancy of the area are shorter or longer depending on adequate yields of local reservoir age (Ndeye, 2008), which is a relevant element for marine samples. Thus, the archaeological implications observed with the reservoir effect are the rejuvenation or ageing of the dates, the age of the sites, the duration of occupation prehistoric or historical sites studied. Using the calibration programmes, it is noted that for the site of Senegal (Khant), without taking into account the reservoir effect, the human occupation is a priori, from the fifth millennium (Ancient Neolithic) to the third millennium BC (Middle Neolithic). However, if this marine reservoir effect is applied, the chronological periodisation goes from the fourth millennium to the first millennium. For the Mauritanian sites, the reservoir age correction is necessary for the Chami site while for the Tintan site is not required. Therefore, the calibrated archaeological chronologies obtained after the application of the marine reservoir effect are more relevant.


Sign in / Sign up

Export Citation Format

Share Document