Numerical Simulation of Scouring in Overtopping Dam-break Flow

Author(s):  
Can Huang ◽  
Xiaoliang Wang ◽  
Qingquan Liu

<p>Overtopping dam-break flow has great harm to the earthen embankments due to the hydraulic erosion. Some researchers have carried out relevant model experiments, but it is difficult to achieve the experimental conditions for the actual situation. The common numerical simulation is to express the scouring process through the empirical relationship, which obviously could not reflect the real scouring process. In this paper, a new overtopping erosion model using Smoothed Particle Hydrodynamics (SPH) is proposed. When the shear stress on the sediment SPH particle exceeds the critical stress, the erosion process begins. Then, when a sediment SPH particle is completely eroded, it will begin to move and is described as a non-Newtonian fluid. The un-incipient sediment particles are treated as boundary. This model is well validated with plane dike-breach experiment, and has also achieved a good agreement with erodible bed dam-break experiment.</p>

2018 ◽  
Vol 195 ◽  
pp. 05013
Author(s):  
Raden Harya Dananjaya

Tsunami is a natural disaster that have resulted in dreadful damages over time. Extensive researches have been conducted to scrutinize and counteract the natural hazard using three major research components which are: field monitoring, laboratory tests, and numerical methods. However, laboratory tests are high-priced and arduous. Numerical simulation overcomes these drawbacks and can be utilized in collaboration with laboratory tests. Recently, newly introduced meshless Lagrangian particle method called Smoothed Particle Hydrodynamics (SPH) has gained attention. In this paper, SPH method has been employed to simulate tsunami. A SPH code is developed from scratch. To validate the code, a traditional dam break simulation is conducted. Lastly, a tsunami model is simulated using the developed SPH code and compared with past experimental data. The results indicate that the code is in accordance with previous experimental data and numerical simulation. Whereby, there’s been a slight deviation arises in tsunami simulation. The velocity of the code is relatively less to that of the experimental data. Such inconsistencies could emerge due to a number of reasons, i.e. the choice of the SPH parameters and model simplification. Generally, the developed SPH code had a satisfactory performance to model tsunami and dam-break problem.


2014 ◽  
Vol 553 ◽  
pp. 168-173 ◽  
Author(s):  
Maziar Gholami Korzani ◽  
Sergio Andres Galindo-Torres ◽  
David Williams ◽  
Alexander Scheuermann

The study concerns the application of the smoothed particle hydrodynamics (SPH) method within computational fluid dynamics. In the present study, a tank discharge with a falling head is investigated. Water is modelled as a viscous fluid with weak compressibility. An enhanced treatment of the solid boundaries is used within the two-dimensional SPH scheme. The boundaries are represented by a special set of SPH particles that differ from the ones representing the fluid by being immovable, preventing the fluid from leaving the container. Particles with different colors are used to illustrate the sequence of the empting the tank as well as the velocity vectors to show stream lines. A code is developed using C++ to solve all equations explicitly by use of a Verlet algorithm. Results are compared to an analytical solution, and a good agreement is achieved.


Author(s):  
Armin Ansari ◽  
Ehsan Khavasi ◽  
Jafar Ghazanfarian

Different permutations of the single and the two-fold dam-break flow have been investigated using the mesh-free smoothed-particle hydrodynamics and the experimental setup. The free-surface deformation in the case with the wet bed for five different downstream water heights has been investigated and respective numerical and experimental results were presented. The results demonstrate that the increase of the water height over the wet bed leads to the reduction of the flow front velocity. Effect of considering or omitting the dam gate during the numerical simulation has also been examined, which proves that the simulations including the dam gate show improved agreement with the experimental results. Influence of the three-dimensional cubic, triangular, circular and square cylindrical obstacles and their position on flow characteristics has been investigated. As the distance between the triangular obstacle and the gate increases, a bore is created at the position closer to the top of the triangle. In addition, it is found that larger force is exerted on the circular cylinder in comparison to the square cylinder.


2020 ◽  
Vol 59 (40) ◽  
pp. 18236-18246
Author(s):  
Tianwen Dong ◽  
Yadong He ◽  
Jianchun Wu ◽  
Shiyu Jiang ◽  
Xingyuan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document