Assessment of Meteorological and Hydrological Droughts and Floods over mainland Australia based on Drought Indices

Author(s):  
Wei Wang ◽  
Yunzhong Shen ◽  
Fengwei Wang ◽  
Weiwei Li

<p>Climate change has led to increased droughts and floods over mainland Australia, resulting in water scarcity, excessive surplus and socioeconomic losses. Therefore, it is of great significance to comprehensively evaluate droughts and floods from the meteorological and hydrological perspective. Firstly, we determine the Standard Precipitation and Evapotranspiration Index (SPEI) by correlation analysis to represent the meteorological conditions. To characterize the hydrological conditions, we calculate the hydrological drought indices including Standard Runoff Index (SRI), Soil Moisture Deficit Index (SMDI), and Total Storage Deficit Index (TSDI), using the runoff and soil moisture data from the Global Land Data Assimilation System (GLDAS) and the Terrestrial Water Storage Change (TWSC) data from Gravity Recovery And Climate Experiment (GRACE) respectively. Results show that the most severe hydrological drought over mainland Australia during the study period occurred from May 2006 to Jan. 2009 with the drought severity of -58.28 (cm months) and the most severe flood from Jun. 2010 to Jan. 2013 is with the severity of 151.36 (cm months). The comprehensive analysis of both meteorological and hydrological drought indices shows that both meteorological and hydrological drought indices can effectively detect the droughts and floods over mainland Australia. Moreover, the meteorological drought and flood are of higher frequency, while hydrological drought and flood have a relatively longer duration. Based on the cross-correlation analysis, we find that the SPEI can firstly reflect the droughts or floods over mainland Australia, and then the SRI, SMDI and TSDI reflect with the time lags of one, three and six months respectively. Furthermore, we calculate the frequency of drought and flood at the basin scale and find that SPEI and SMDI are equally sensitive to drought and flood, while TSDI is more sensitive to flood than drought. This study reveals the relationship between meteorological and hydrological conditions in mainland Australia in the last two decades and highlights its intensifying extreme climate conditions under the circumstances of the increasing temperature and complex changing precipitation.</p>

2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2010 ◽  
Vol 09 (02) ◽  
pp. 203-217 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
YULEI PANG

This paper reports the statistics of extreme values and positions of extreme events in Chinese stock markets. An extreme event is defined as the event exceeding a certain threshold of normalized logarithmic return. Extreme values follow a piecewise function or a power law distribution determined by the threshold due to a crossover. Extreme positions are studied by return intervals of extreme events, and it is found that return intervals yield a stretched exponential function. According to correlation analysis, extreme values and return intervals are weakly correlated and the correlation decreases with increasing threshold. No long-term cross-correlation exists by using the detrended cross-correlation analysis (DCCA) method. We successfully introduce a modification specific to the correlation and derive the joint cumulative distribution of extreme values and return intervals at 95% confidence level.


Meccanica ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 59-72 ◽  
Author(s):  
O. Bolognani ◽  
M. Mancini ◽  
R. Rosso

2021 ◽  
Vol 13 (9) ◽  
pp. 1835
Author(s):  
Yared Bayissa ◽  
Semu Moges ◽  
Assefa Melesse ◽  
Tsegaye Tadesse ◽  
Anteneh Z. Abiy ◽  
...  

Drought is one of the least understood and complex natural hazards often characterized by a significant decrease in water availability for a prolonged period. It can be manifested in one or more forms as meteorological, agricultural, hydrological, and/or socio-economic drought. The overarching objective of this study is to demonstrate and characterize the different forms of droughts and to assess the multidimensional nature of drought in the Abbay/ Upper Blue Nile River (UBN) basin and its national and regional scale implications. In this study, multiple drought indices derived from in situ and earth observation-based hydro-climatic variables were used. The meteorological drought was characterized using the Standardized Precipitation Index (SPI) computed from the earth observation-based gridded CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) rainfall data. Agricultural and hydrological droughts were characterized by using the Soil Moisture Deficit Index (SMDI) and Standardized Runoff-discharge Index (SRI), respectively. The monthly time series of SMDI was derived from model-based gridded soil moisture and SRI from observed streamflow data from 1982 to 2019. The preliminary result illustrates the good performance of the drought indices in capturing the historic severe drought events (e.g., 1984 and 2002) and the spatial extents across the basin. The results further indicated that all forms of droughts (i.e., meteorological, agricultural, and hydrological) occurred concurrently in Abbay/Upper Blue Nile basin with a Pearson correlation coefficient ranges from 0.5 to 0.85 both Kiremt and annual aggregate periods. The concurrent nature of drought is leading to a multi-dimensional socio-economic crisis as indicated by rainfall, and soil moisture deficits, and drying of small streams. Multi-dimensional drought mitigation necessitates regional cooperation and watershed management to protect both the common water sources of the Abbay/Upper Blue Nile basin and the socio-economic activities of the society in the basin. This study also underlines the need for multi-scale drought monitoring and management practices in the basin.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1540-1541
Author(s):  
Tristan O'Neill ◽  
B. C. Regan ◽  
Matthew Mecklenburg

Sign in / Sign up

Export Citation Format

Share Document