Global and Regional Satellite-based Surface Solar Radiation data sets provided by the CM SAF

Author(s):  
Jörg Trentmann ◽  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Roswitha Cremer

<p>The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth’s energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models.</p><p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF are freely available via www.cmsaf.eu.</p><p>Here we present the regional and global climate data records of surface solar radiation from the CM SAF. The regional SARAH-2.1 climate data record (Surface Solar Radiation Dataset – Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002_01) is based on observations from the series of Meteosat satellites. SARAH-2.1 provides high resolution data (temporal and spatial) of the surface solar radiation (global and direct) and the sunshine duration from 1983 to 2017 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002_01) is based on observations from the series of AVHRR instruments onboard polar-orbiting satellites. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from January 1982 to June 2019 with a spatial resolution of 0.25°. In addition to the solar surface radiation, also the longwave surface radiation as well as surface albedo and numerous cloud properties are provided in CLARA. The high accuracy and stability of these data record allows the assessment of the spatial and temporal variability and trends as well as a number of other applications that require high-resolution surface irradiance data.</p><p>Both Thematic Climate Data Records (TCDR) are accompanied and temporally-extended by consistent data records, so-called Interim Climate Data Records (ICDR), which are provided with a latency of 5 days to support applications that require more recent surface irradiance data, e.g., operational climate monitoring.</p><p>In late 2021 / early 2022 new versions of both data records, SARAH and CLARA, will be provided by the CM SAF. The quality of these data records will be improved, e.g, by a better treatment of snow-covered surfaces, and temporally extended to cover the WMO climate reference period 1991 to 2020. Here, first results of the updated data records and their improvements will be presented.</p>

2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p class="western"><span lang="en-US">The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</span></p> <p class="western"><span lang="en-US">In 2022, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</span></p> <p class="western" align="left"><span lang="en-US">In this presentation, an overview of the SARAH climate data record and their applications will be given. A focus will be on the SARAH-3 developments and validation with surface reference observations. Further, SARAH-3 will be used for a first analysis of the climate variability and potential trends of global radiation in Europe during the last decades. </span><span lang="en-US">The data record reveals that there is an increasing trend of surface solar radiation in Europe during the last decades, which is superimposed by decadal and regional variability.</span></p>


2020 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jörg Trentmann

<p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based  high-quality climate data records, with a focus on the global energy and water cycle. The new concept of Interim Climate Data Records (ICDRs) that extent the fixed-length Climate Data Records (CDRs) into 'near-realtime' in a consistent way, enables climate monitoring at a higher level of accuracy.</p><p>It has been found in recent studies based on surface and satellite data that on average SSR has been increasing in the last 3 decades in Europe (e.g. Sanchez-Lorenzo et al. 2017, Pfeifroth et al. 2018) - especially in spring and summer. Here we use the latest SARAH-2.1 TCDR (1983-2017), potentially together with its corresponding ICDR (2018 onwards), to analyze if the found positve trends in SSR are about to continue. In this respect, the satellite-based data record will be compared and validated with surface measurements given by the Baseline Surface Radiation Network (BSRN), the  World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). A reasonable line of potential reasons for the found spring and summertime brightening in Europe is discussed.</p>


2021 ◽  
Author(s):  
Jaqueline Drücke ◽  
Uwe Pfeifroth ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>Sunshine Duration (SDU) is an important parameter in climate monitoring (e.g., due to the availability of long term measurements) and weather application. The exceptional sunny years in Europe since 2018 have raised also the attention of the general public towards this parameter.</p><p>The definition of SDU by WMO via the threshold of 120 W/m<sup>2</sup> for the Direct Normal Irradiance (DNI) allows the estimation of sunshine duration from satellite-derived surface irradiance data. Sunshine duration is part of the climate data record (CDR) “Surface Solar Radiation data set – Heliosat” (SARAH-2.1, doi: 10.5676/EUM_SAF_CM/SARAH/V002_01) by EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), which is based on observations from the series of Meteosat satellites. The provided temporal resolutions are daily and monthly sums with a grid space of 0.05°; the data are available from 1983 to 2017 at www.cmsaf.eu. This climate data record is temporally extended by the so-called SARAH-ICDR (Interim Climate Data record) with an average timeliness of 3 days to allow climate monitoring. An updated, improved, and extended version of the SARAH-2.1 CDR is currently being developed and will be made available in early 2022. The SARAH-3 CDR of sunshine duration, covering 1983 to 2020, will be improved compared to the current version, in particular during situations with snow-covered surfaces.</p><p>Here, the algorithm, improvements compared to SARAH-2.1 and a first validation will be presented for sunshine duration, especially for Germany and Europe. The validation is based on station data from Climate Data Center (CDC) for Germany and European Climate Assessment & Dataset (ECA&D) for Europe.</p>


2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</p><p>In fall 2021, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</p><p>In this presentation, an overview of the SARAH climate data record and their applications will be provided. A focus will be on the SARAH-3 developments and improvements (i.e. improved consideration of snow-covered surfaces). First validation results of the new Climate Data Record using surface reference observations will be presented. Further, SARAH-3 will be used for the analysis of the climate variability in Europe during the last decades.</p><p>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 3885-3906
Author(s):  
Greg E. Bodeker ◽  
Jan Nitzbon ◽  
Jordis S. Tradowsky ◽  
Stefanie Kremser ◽  
Alexander Schwertheim ◽  
...  

Abstract. Total column ozone (TCO) data from multiple satellite-based instruments have been combined to create a single near-global daily time series of ozone fields at 1.25∘ longitude by 1∘ latitude spanning the period 31 October 1978 to 31 December 2016. Comparisons against TCO measurements from the ground-based Dobson and Brewer spectrophotometer networks are used to remove offsets and drifts between the ground-based measurements and a subset of the satellite-based measurements. The corrected subset is then used as a basis for homogenizing the remaining data sets. The construction of this database improves on earlier versions of the database maintained first by the National Institute of Water and Atmospheric Research (NIWA) and now by Bodeker Scientific (BS), referred to as the NIWA-BS TCO database. The intention is for the NIWA-BS TCO database to serve as a climate data record for TCO, and to this end, the requirements for constructing climate data records, as detailed by GCOS (the Global Climate Observing System), have been followed as closely as possible. This new version includes a wider range of satellite-based instruments, uses updated sources of satellite data, extends the period covered, uses improved statistical methods to model the difference fields when homogenizing the data sets, and, perhaps most importantly, robustly tracks uncertainties from the source data sets through to the final climate data record which is now accompanied by associated uncertainty fields. Furthermore, a gap-free TCO database (referred to as the BS-filled TCO database) has been created and is documented in this paper. The utility of the NIWA-BS TCO database is demonstrated through an analysis of ozone trends from November 1978 to December 2016. Both databases are freely available for non-commercial purposes: the DOI for the NIWA-BS TCO database is https://doi.org/10.5281/zenodo.1346424 (Bodeker et al., 2018) and is available from https://zenodo.org/record/1346424. The DOI for the BS-filled TCO database is https://doi.org/10.5281/zenodo.3908787 (Bodeker et al., 2020) and is available from https://zenodo.org/record/3908787. In addition, both data sets are available from http://www.bodekerscientific.com/data/total-column-ozone (last access: June 2021).


2020 ◽  
Author(s):  
Greg E. Bodeker ◽  
Jan Nitzbon ◽  
Jordis S. Tradowsky ◽  
Stefanie Kremser ◽  
Alexander Schwertheim ◽  
...  

Abstract. Total column ozone (TCO) data from multiple satellite-based instruments have been combined to create a single near-global daily time series of ozone fields at 1.25° longitude by 1° latitude spanning the period 31 October 1978 to 31 December 2016. Comparisons against TCO measurements from the ground-based Dobson and Brewer spectrophotometer networks are used to remove offsets and drifts between the ground-based measurements and a subset of the satellite-based measurements. The corrected subset is then used as a basis for homogenising the remaining data sets. The construction of this database improves on earlier versions of the database maintained first by the National Institute of Water and Atmospheric Research (NIWA) and now by Bodeker Scientific (BS), referred to as the NIWA-BS TCO database. The intention is that the NIWA-BS TCO database serves as a climate data record for TCO and, to this end, the requirements for constructing climate data records, as detailed by GCOS (the Global Climate Observing System) have been followed as closely as possible. This new version includes a wider range of satellite-based instruments, uses updated sources of satellite data, extends the period covered, uses improved statistical methods to model the difference fields when homogenising the data sets, and, perhaps most importantly, robustly tracks uncertainties from the source data sets through to the final climate data record which is now accompanied by associated uncertainty fields. Furthermore, a gap-free TCO database (referred to as the BS-filled TCO database) has been created and is documented in this paper. The utility of the NIWA-BS TCO database is demon strated through an analysis of ozone trends from November 1978 to December 2016. Both databases are freely available for non-commercial purposes: the doi for the NIWA-BS TCO database is 10.5281/zenodo.1346424 (Bodeker et al., 2018) and is available from https://zenodo.org/record/1346424. The doi for the BS-filled TCO database is 10.5281/zenodo.3908787 (Bodeker et al., 2020) and is available from https://zenodo.org/record/3908787. In addition, both data sets are available from http://www.bodekerscientific.com/data/total-column-ozone.


2017 ◽  
Vol 17 (9) ◽  
pp. 5809-5828 ◽  
Author(s):  
Karl-Göran Karlsson ◽  
Kati Anttila ◽  
Jörg Trentmann ◽  
Martin Stengel ◽  
Jan Fokke Meirink ◽  
...  

Abstract. The second edition of the satellite-derived climate data record CLARA (The CM SAF Cloud, Albedo And Surface Radiation dataset from AVHRR data – second edition denoted as CLARA-A2) is described. The data record covers the 34-year period from 1982 until 2015 and consists of cloud, surface albedo and surface radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting, operational meteorological satellites. The data record is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project as part of the operational ground segment. Its upgraded content and methodology improvements since edition 1 are described in detail, as are some major validation results. Some of the main improvements to the data record come from a major effort in cleaning and homogenizing the basic AVHRR level-1 radiance record and a systematic use of CALIPSO-CALIOP cloud information for development and validation purposes. Examples of applications studying decadal changes in Arctic summer surface albedo and cloud conditions are provided.


2015 ◽  
Vol 8 (10) ◽  
pp. 4561-4571 ◽  
Author(s):  
A. Lattanzio ◽  
F. Fell ◽  
R. Bennartz ◽  
I. F. Trigo ◽  
J. Schulz

Abstract. Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982–2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.


2020 ◽  
Author(s):  
Irina Solodovnik ◽  
Diana Stein ◽  
Jan Fokke Meirink ◽  
Karl-Göran Karlsson ◽  
Martin Stengel

<p>Global data records of cloud properties are an important part for the analysis of the Earth's climate system and its variability. One of the few sources facilitating such records are the measurements of the satellite-based Advanced Very High Resolution Radiometer (AVHRR) sensor that provides spatially homogeneous and high resolved information in multiple spectral bands. This information can be used to retrieve global cloud properties covering multiple decades, as, for example, composed as part of the CM SAF Cloud, Albedo, Radiation data record based on AVHRR (CLARA) series.</p><p>In this presentation we introduce the edition 2.1 (CLARA-A2.1) of this record series, which is the temporally extended version of CLARA-A2. This extension includes three and a half more years at the end of the data record, which now covers the time period January 1982 to June 2019 (37.5 years). CLARA-A2.1 includes a comprehensive set of cloud parameters: fractional cloud cover, cloud top products, cloud thermodynamic phase and cloud physical properties, such as cloud optical thickness, particle effective radius and cloud water path. Cloud products are available as daily and monthly averages and histograms (Level 3) on a regular 0.25°×0.25° global grid and as daily, global composite products (Level 2b) with a spatial resolution of 0.05°×0.05°. Time series analyses of the CLARA-A2.1 cloud products show the homogeneity and stability of the extension.</p><p>In addition to the general characteristics of the CLARA-A2.1 record, we will summarize the results of the thorough evaluation efforts that were conducted by validation against reference observations (e.g. SYNOP, DARDAR, CALIOP) and by comparisons to similar well established data records (e.g. Patmos-X, ISCCP-H and MODIS C6.1). CLARA-A2.1 cloud products show generally a very good agreement with all the compared data sets and fulfil CM SAF's accuracy, precision and decadal stability requirements. As an additional aspect, we will touch upon the CLARA Interim Climate Data Record (ICDR) concept that will soon be used for extending CLARA-A2.1 in near-real-time mode.</p>


2020 ◽  
Author(s):  
Guillaume Dodet ◽  
Jean-François Piolle ◽  
Yves Quilfen ◽  
Saleh Abdalla ◽  
Mickaël Accensi ◽  
...  

Abstract. Sea state data are of major importance for climate studies, marine engineering, safety at sea, and coastal management. However, long-term sea state datasets are sparse and not always consistent, and sea state data users still mostly rely on numerical wave models for research and engineering applications. Facing the urgent need for a sea state Climate Data Record, the Global Climate Observing System has listed Sea State as an Essential Climate Variable (ECV), fostering the launch in 2018 of the Sea State Climate Change Initiative (CCI). The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives established by ESA and its member states in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset, the implementation and benefits of a high-level denoising method, its validation against in-situ measurements and numerical model outputs, and the future developments considered within the Sea State CCI project. The Sea State CCI dataset v1 is freely available on the ESA CCI website (http://cci.esa.int/data) at ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea_state/data/v1.1_release/. Three products are available: a multi-mission along-track L2P product (https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1, Piollé et al., 2020a), a daily merged multi mission along-track L3 product (https://doi.org/10.5285/3ef6a5a66e9947d39b356251909dc12b, Piollé et al., 2020b) and a multi-mission monthly gridded L4 product (https://doi.org/10.5285/47140d618dcc40309e1edbca7e773478, Piollé et al., 2020c).


Sign in / Sign up

Export Citation Format

Share Document