scholarly journals CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data

2017 ◽  
Vol 17 (9) ◽  
pp. 5809-5828 ◽  
Author(s):  
Karl-Göran Karlsson ◽  
Kati Anttila ◽  
Jörg Trentmann ◽  
Martin Stengel ◽  
Jan Fokke Meirink ◽  
...  

Abstract. The second edition of the satellite-derived climate data record CLARA (The CM SAF Cloud, Albedo And Surface Radiation dataset from AVHRR data – second edition denoted as CLARA-A2) is described. The data record covers the 34-year period from 1982 until 2015 and consists of cloud, surface albedo and surface radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting, operational meteorological satellites. The data record is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project as part of the operational ground segment. Its upgraded content and methodology improvements since edition 1 are described in detail, as are some major validation results. Some of the main improvements to the data record come from a major effort in cleaning and homogenizing the basic AVHRR level-1 radiance record and a systematic use of CALIPSO-CALIOP cloud information for development and validation purposes. Examples of applications studying decadal changes in Arctic summer surface albedo and cloud conditions are provided.


2016 ◽  
Author(s):  
Karl-Göran Karlsson ◽  
Kati Anttila ◽  
Jörg Trentmann ◽  
Martin Stengel ◽  
Jan Fokke Meirink ◽  
...  

Abstract. The second edition of the satellite-derived climate data record CLARA ("The CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data" – second edition denoted CLARA-A2) is described. The data record covers the 34-year period from 1982 until 2015 and consists of cloud, surface albedo and surface radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting, operational meteorological satellites. The data record is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project as part of the operational ground segment. Its upgraded content and methodology improvements since edition 1 are described in detail as well as some major validation results. Some of the main improvements of the data record come from a major effort in cleaning and homogenising the basic AVHRR level 1 radiance record and a systematic use of CALIPSO-CALIOP cloud information for development and validation purposes. Examples of applications studying decadal changes in Polar Summer surface albedo and cloud conditions, as well as global cloud redistribution patterns, are provided.



2015 ◽  
Vol 8 (10) ◽  
pp. 4561-4571 ◽  
Author(s):  
A. Lattanzio ◽  
F. Fell ◽  
R. Bennartz ◽  
I. F. Trigo ◽  
J. Schulz

Abstract. Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982–2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.



2015 ◽  
Vol 8 (7) ◽  
pp. 7535-7571
Author(s):  
A. Lattanzio ◽  
F. Fell ◽  
R. Bennartz ◽  
I. F. Trigo ◽  
J. Schulz

Abstract. Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982–2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained and Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. A first step consists on the application of a robust and reliable cloud mask taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers some clouds can still remain undetected. A second step relies on a post processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR Release.



2013 ◽  
Vol 6 (1) ◽  
pp. 1859-1898 ◽  
Author(s):  
B. Dürr ◽  
M. Schröder ◽  
R. Stöckli ◽  
R. Posselt

Abstract. A cloud mask, cloud fractional coverage (CFC) and cloud top pressure (CTP) retrieval scheme called HelioFTH is presented. The algorithm relies on infrared (IR) window channel observations only. The scheme is applicable to the full temporal and spatial resolution of the Meteosat Visible and InfraRed Imager (MVIRI) and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensors. The main focus is laid on the separation of high cloud coverage (HCC) from low level clouds. CFC retrieval employs a IR-only cloud mask based on an aggregated rating scheme. CTP retrieval is based on a Heliosat-like cloud index for the MVIRI IR channel. CFC from HelioFTH, the International Satellite Cloud Climatology Project (ISCCP) DX and the Satellite Application Facility on Climate Monitoring (CM SAF) were validated with CFC from the Baseline Surface Radiation Network (BSRN) and the Alpine Surface Radiation Budget (ASRB) network. HelioFTH CFC differs by not more than 5–10% from CM SAF CFC but it is higher than ISCCP-DX CFC. In particular the conditional probability to detect cloud-free pixels with HelioFTH is raised by about 35% compared to ISCCP-DX. Also, the HelioFTH HCC was inter-compared to CM SAF and ISCCP-DX over different regions. The probability of false detection of cloud-free HCC pixels is 15% lower for HelioFTH than for ISCCP-DX compared to the CM SAF HCC product over the full-disk area. HelioFTH could be used for generating a climate data record of cloud physical properties once its consistency and homogeneity is validated for the full Meteosat time series.



2006 ◽  
Vol 37 (12) ◽  
pp. 2166-2171 ◽  
Author(s):  
R. Hollmann ◽  
R.W. Mueller ◽  
A. Gratzki


2008 ◽  
Vol 21 (18) ◽  
pp. 4723-4748 ◽  
Author(s):  
A. Bodas-Salcedo ◽  
M. A. Ringer ◽  
A. Jones

Abstract The partitioning of the earth radiation budget (ERB) between its atmosphere and surface components is of crucial interest in climate studies as it has a significant role in the oceanic and atmospheric general circulation. An analysis of the present-day climate simulation of the surface radiation budget in the atmospheric component of the new Hadley Centre Global Environmental Model version 1 (HadGEM1) is presented, and the simulations are assessed by comparing the results with fluxes derived from satellite data from the International Satellite Cloud Climatology Project (ISCCP) and ground measurements from the Baseline Surface Radiation Network (BSRN). Comparisons against radiative fluxes from satellite and ground observations show that the model tends to overestimate the surface incoming solar radiation (Ss,d). The model simulates Ss,d very well over the polar regions. Consistency in the comparisons against BSRN and ISCCP-FD suggests that the ISCCP-FD database is a good test for the performance of the surface downwelling solar radiation in climate model simulations. Overall, the simulation of downward longwave radiation is closer to observations than its shortwave counterpart. The model underestimates the downward longwave radiation with respect to BSRN measurements by 6.0 W m−2. Comparisons of land surface albedo from the model and estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that HadGEM1 overestimates the land surface albedo over deserts and over midlatitude landmasses in the Northern Hemisphere in January. Analysis of the seasonal cycle of the land surface albedo in different regions shows that the amplitude and phase of the seasonal cycle are not well represented in the model, although a more extensive validation needs to be carried out. Two decades of coupled model simulations of the twentieth-century climate are used to look into the model’s simulation of global dimming/brightening. The model results are in line with the conclusions of the studies that suggest that global dimming is far from being a uniform phenomenon across the globe.



2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</p><p>In fall 2021, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</p><p>In this presentation, an overview of the SARAH climate data record and their applications will be provided. A focus will be on the SARAH-3 developments and improvements (i.e. improved consideration of snow-covered surfaces). First validation results of the new Climate Data Record using surface reference observations will be presented. Further, SARAH-3 will be used for the analysis of the climate variability in Europe during the last decades.</p><p>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .</p>



2018 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Zakaria Marouf BARKA ◽  
Théophile Lealea ◽  
Rene Tchinda

Surface albedo is one parameter of the climate variables. It influences the surface radiation budget for a given site. The availability of surface albedo data at both temporally and spatially levels are needed. In the lack of ground recorded values of albedo, we have to estimate surface albedo from the climatic variables. The model generated in this study enables the continuous observation of land surface albedo through relative model established from the multivariate regression method. From satellite recorded data, we estimate the ground surface albedo for some selected sites. The result were satisfactory with the root mean square error (RMSE) is 0.035. The Mean Absolute Error (MAE) was computed and indicated to be as low as 0.027 and mean absolute percentage error (MAPE) is 7.58.  



2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunlei Meng

Surface albedo is a crucial parameter in land surface radiation budget. As bias exists between the model simulated and observed surface albedo, data assimilation is an important method to improve the simulation results. Moreover, surface albedo is associated with the wavelength of the sunlight. So, solar radiation partitioning is important to parameterize the surface albedo. In this paper, the moderate resolution imaging spectroradiometer- (MODIS-) retrieved direct visible, direct near-infrared, diffuse visible, and diffuse near-infrared surface albedos were assimilated into the integrated urban land model (IUM). The solar radiation partitioning method was introduced to parameterize the surface albedo. Based on the albedo data from MODIS and the solar radiation partitioning method, the surface albedo data set for the Beijing municipal area was generated. Based on the surface albedo data set and the IUM, the impacts of the surface albedo on the surface radiation budget were discussed quantitatively. Surface albedo is inversely proportional to the net radiation. For urban areas, after assimilation, the annual average net radiation decreases about 5.6%. For cropland, grassland, and forest areas, after assimilation, the annual average net radiations increase about 20.2%, 24.3%, and 18.7%, respectively.



2020 ◽  
Vol 12 (17) ◽  
pp. 2787
Author(s):  
Mohan Shankar ◽  
Wenying Su ◽  
Natividad Manalo-Smith ◽  
Norman G. Loeb

The Clouds and the Earth’s Radiant Energy System (CERES) instruments have enabled the generation of a multi-decadal Earth radiation budget (ERB) climate data record (CDR) at the top of the Earth’s atmosphere, within the atmosphere, and at the Earth’s surface. Six CERES instruments have been launched over the course of twenty years, starting in 1999. To seamlessly continue the data record into the future, there is a need to radiometrically scale observations from newly launched instruments to observations from the existing data record. In this work, we describe a methodology to place the CERES Flight Model (FM) 5 instrument on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on the same radiometric scale as the FM3 instrument on the Aqua spacecraft. We determine the required magnitude of radiometric scaling by using spatially and temporally matched observations from these two instruments and describe the process to radiometrically scale SNPP/FM5 to Aqua/FM3 through the instrument spectral response functions. We also present validation results after application of this radiometric scaling and demonstrate the long-term consistency of the SNPP/FM5 record in comparison with the CERES instruments on Aqua and Terra.



Sign in / Sign up

Export Citation Format

Share Document