GRACE Follow-On Gravity Field Recovery from Combined Laser Ranging Interferometer and Microwave Ranging System Measurements

Author(s):  
Saniya Behzadpour ◽  
Andreas Kvas ◽  
Torsten Mayer-Gürr

<p>Besides a K-Band Ranging System (KBR), GRACE-FO carries a Laser Ranging Interferometer (LRI) as a technology demonstration to provide measurements of inter-satellite range changes. This additional measurement technology provides supplementary observations, which allow for cross-instrument diagnostics with the KBR system and, to some extent, the separation of ranging noise from other sources such as noise in the on-board accelerometer (ACC) measurements.</p><p>The aim of this study is to incorporate the two ranging systems (LRI and KBR) observations in ITSG-Grace2018 gravity field recovery. The two observation groups are combined in an iterative least-squares adjustment with variance component estimation used to determine the unknown noise covariance functions for KBR, LRI, and ACC measurements. We further compare the gravity field solutions obtained from the combined solutions to KBR-only results and discuss the differences with a focus on the global gravity field and LRI calibration parameters.</p>

2020 ◽  
Author(s):  
Andreas Kvas ◽  
Saniya Behzadpour ◽  
Torsten Mayer-Guerr

<p>The unique instrumentation of GRACE Follow-On (GRACE-FO) offers two independent inter-satellite ranging systems with concurrent observations. Next to a K-Band Ranging System (KBR), which has already been proved during the highly-successfully GRACE mission, the GRACE-FO satellites are equipped with an experimental Laser Ranging Interferometer (LRI), which features a drastically increased measurement precision compared to the KBR. Having two simultaneous ranging observations available allows for cross-calibration between the instruments and, to some degree, the separation of ranging noise from other sources such as noise in the on-board accelerometer (ACC) measurements.  </p> <p>In this contribution we present a stochastic description of the two ranging observation types provided by GRACE-FO, which also takes cross-correlations between the two observables into account. We determine the unknown noise covariance functions through variance component estimation and show that this method is, to some extent, capable of separating between KBR, LRI, and ACC noise. A side effect of this stochastic modelling is that the formal errors of the spherical harmonic coefficients fit very well to empirical estimates, which is key for combination with other data types and uncertainty propagation. We further compare the gravity field solutions obtained from a combined least-squares adjustment to KBR-only and LRI-only results and discuss the differences between the time series with a focus on gravity field and calibration parameters. Even though, at the moment, global statistics only show a minor improvement when using LRI ranging measurements instead of KBR observations, some parts of the spectrum and geographic regions benefit significantly from the increased measurement accuracy of the LRI. Specifically, we see a higher signal-to-noise ratio in low spherical harmonic orders and the polar regions.</p>


2020 ◽  
Author(s):  
Saniya Behzadpour ◽  
Andreas Kvas ◽  
Torsten Mayer-Gürr

<p class="western" align="justify">GRACE-FO carries a Laser Ranging Interferometer (LRI) as a technology demonstration to provide measurements of inter-satellite range changes. This additional measurement technology provides supplementary observations, which improve the reliability of the range rate measurements and allow for a cross-instrument diagnostics and calibration with the K-band ranging (KBR) system.</p> <p class="western" align="justify">We present a two-step approach used for LRI1B data calibration within the ITSG-Grace2018 scheme, which is compatible with the entire v04 release timespan. The aim of this study is to mitigate the remaining systematics due to the LRI datation time offset and LRI scale factor. We discuss the implementation of calibration parameters and the contribution of the calibration approach to the overall accuracy of gravity field solutions.</p>


2018 ◽  
Author(s):  
Le Ren ◽  
Steffen Schön

Abstract. ESA's Swarm mission offers excellent opportunities to study the ionosphere and to bridge the gap in gravity field recovery between GRACE and GRACE-FO. In order to contribute to these studies, at IfE Hannover, a software based on Precise Point Positioning (PPP) batch least-squares adjustment is developed for kinematic orbit determination. In this paper, the main achievements are presented. The approach for the detection and repair of cycle slips caused by ionospheric scintillation is introduced, which is based on the Melbourne-Wübbena and ionosphere-free linear combination. The results show that around 95 % cycle slips can be repaired and the majority of the cycle slips occur on L2. After the analysis and careful preprocessing of the observations, one year kinematic orbits of Swarm satellites from Sept., 2015 to Aug., 2016 are computed with the PPP approach. The kinematic orbits are validated with the reduced-dynamic orbits published by ESA in Swarm Level 2 products and the SLR measurements. The differences between our kinematic orbits and ESA reduced-dynamic orbits are at the 1.5 cm, 1.5 cm and 2.5 cm level in the along, cross and radial track, respectively. Remaining systematics are characterised by spectral analyses. The external validation with SLR measurements shows rms errors at the 4 cm level. Finally, fully populated covariance matrices of the kinematic orbits obtained from 30 s, 10 s and 1 s data rate are discussed. It is shown that for data rates larger than 10 s, the correlation should be taken into account when using POD coordinates as input for the gravity field recovery.


1999 ◽  
Vol 73 (8) ◽  
pp. 398-406 ◽  
Author(s):  
R. König ◽  
Z. Chen ◽  
Ch. Reigber ◽  
P. Schwintzer

2003 ◽  
Vol 1 ◽  
pp. 121-126 ◽  
Author(s):  
K. Arsov ◽  
R. Pail

Abstract. In the course of the GOCE satellite mission, the high-low Satellite to Satellite Tracking (SST) observations have to be processed for the determination of the long wavelength part of the Earth’s gravity field. This paper deals with the formulation of the high-low SST observation equations, as well as the methods for gravity field recovery from orbit information. For this purpose, two approaches, i.e. the numerical integration of orbit perturbations, and the evaluation of the energy equation based on the Jacobi integral, are presented and discussed. Special concern is given to the numerical properties of the corresponding normal equations. In a closed-loop simulation, which is based on a realistic orbit GOCE configuration, these methods are compared and assessed. However, here we process a simplified case assuming that non-conservative forces can be perfectly modelled. Assuming presently achievable accuracies of the Precise Orbit Determination (POD), it turns out that the numerical integration approach is still superior, but the energy integral approach may be an interesting alternative processing strategy in the near future.Key words. High-low SST – gravity field – GOCE – variational equations – least squares adjustment


Sign in / Sign up

Export Citation Format

Share Document