Gravity Field Recovery and Observation Noise Separation from Simultaneous Laser Ranging Interferometer and K-Band Ranging System Measurements

2020 ◽  
Author(s):  
Andreas Kvas ◽  
Saniya Behzadpour ◽  
Torsten Mayer-Guerr

<p>The unique instrumentation of GRACE Follow-On (GRACE-FO) offers two independent inter-satellite ranging systems with concurrent observations. Next to a K-Band Ranging System (KBR), which has already been proved during the highly-successfully GRACE mission, the GRACE-FO satellites are equipped with an experimental Laser Ranging Interferometer (LRI), which features a drastically increased measurement precision compared to the KBR. Having two simultaneous ranging observations available allows for cross-calibration between the instruments and, to some degree, the separation of ranging noise from other sources such as noise in the on-board accelerometer (ACC) measurements.  </p> <p>In this contribution we present a stochastic description of the two ranging observation types provided by GRACE-FO, which also takes cross-correlations between the two observables into account. We determine the unknown noise covariance functions through variance component estimation and show that this method is, to some extent, capable of separating between KBR, LRI, and ACC noise. A side effect of this stochastic modelling is that the formal errors of the spherical harmonic coefficients fit very well to empirical estimates, which is key for combination with other data types and uncertainty propagation. We further compare the gravity field solutions obtained from a combined least-squares adjustment to KBR-only and LRI-only results and discuss the differences between the time series with a focus on gravity field and calibration parameters. Even though, at the moment, global statistics only show a minor improvement when using LRI ranging measurements instead of KBR observations, some parts of the spectrum and geographic regions benefit significantly from the increased measurement accuracy of the LRI. Specifically, we see a higher signal-to-noise ratio in low spherical harmonic orders and the polar regions.</p>

2021 ◽  
Author(s):  
Saniya Behzadpour ◽  
Andreas Kvas ◽  
Torsten Mayer-Gürr

<p>Besides a K-Band Ranging System (KBR), GRACE-FO carries a Laser Ranging Interferometer (LRI) as a technology demonstration to provide measurements of inter-satellite range changes. This additional measurement technology provides supplementary observations, which allow for cross-instrument diagnostics with the KBR system and, to some extent, the separation of ranging noise from other sources such as noise in the on-board accelerometer (ACC) measurements.</p><p>The aim of this study is to incorporate the two ranging systems (LRI and KBR) observations in ITSG-Grace2018 gravity field recovery. The two observation groups are combined in an iterative least-squares adjustment with variance component estimation used to determine the unknown noise covariance functions for KBR, LRI, and ACC measurements. We further compare the gravity field solutions obtained from the combined solutions to KBR-only results and discuss the differences with a focus on the global gravity field and LRI calibration parameters.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 1766
Author(s):  
Igor Koch ◽  
Mathias Duwe ◽  
Jakob Flury ◽  
Akbar Shabanloui

During its science phase from 2002–2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s time-variable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO-2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
T. D. Papanikolaou ◽  
N. Papadopoulos

AbstractThe present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.


2015 ◽  
Vol 6 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Changqing Wang ◽  
Houze Xu ◽  
Min Zhong ◽  
Wei Feng

2019 ◽  
Vol 11 (11) ◽  
pp. 1295
Author(s):  
Xinyu Xu ◽  
Hao Ding ◽  
Yongqi Zhao ◽  
Jin Li ◽  
Minzhang Hu

In contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient (SGG) mission to estimate the coseismic gravity and gravity gradient changes caused by the 2011 Tohoku-Oki Mw 9.0 earthquake. We first construct two global gravity field models up to degree and order 220, before and after the earthquake, based on the least-squares method, with a bandpass Auto Regression Moving Average (ARMA) filter applied to the SGG data along the orbit. In addition, to reduce the influences of colored noise in the SGG data and the polar gap problem on the recovered model, we propose a tailored spherical harmonic (TSH) approach, which only uses the spherical harmonic (SH) coefficients with the degree range 30–95 to compute the coseismic gravity changes in the spatial domain. Then, both the results from the GOCE observations and the GRACE temporal gravity field models (with the same TSH degrees and orders) are simultaneously compared with the forward-modeled signals that are estimated based on the fault slip model of the earthquake event. Although there are considerable misfits between GOCE-derived and modeled gravity gradient changes (ΔVxx, ΔVyy, ΔVzz, and ΔVxz), we find analogous spatial patterns and a significant change (greater than 3σ) in gravity gradients before and after the earthquake. Moreover, we estimate the radial gravity gradient changes from the GOCE-derived monthly time-variable gravity field models before and after the earthquake, whose amplitudes are at a level over three times that of their corresponding uncertainties, and are thus significant. Additionally, the results show that the recovered coseismic gravity signals in the west-to-east direction from GOCE are closer to the modeled signals than those from GRACE in the TSH degree range 30–95. This indicates that the GOCE-derived gravity models might be used as additional observations to infer/explain some time-variable geophysical signals of interest.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 350 ◽  
Author(s):  
Neda Darbeheshti ◽  
Florian Wöske ◽  
Matthias Weigelt ◽  
Christopher Mccullough ◽  
Hu Wu

This paper introduces GRACETOOLS, the first open source gravity field recovery tool using GRACE type satellite observations. Our aim is to initiate an open source GRACE data analysis platform, where the existing algorithms and codes for working with GRACE data are shared and improved. We describe the first release of GRACETOOLS that includes solving variational equations for gravity field recovery using GRACE range rate observations. All mathematical models are presented in a matrix format, with emphasis on state transition matrix, followed by details of the batch least squares algorithm. At the end, we demonstrate how GRACETOOLS works with simulated GRACE type observations. The first release of GRACETOOLS consist of all MATLAB M-files and is publicly available at Supplementary Materials.


2011 ◽  
Vol 85 (8) ◽  
pp. 487-504 ◽  
Author(s):  
S. Goossens ◽  
K. Matsumoto ◽  
D. D. Rowlands ◽  
F. G. Lemoine ◽  
H. Noda ◽  
...  

Author(s):  
Oleg Abrikosov ◽  
Focke Jarecki ◽  
Jürgen Müller ◽  
Svetozar Petrovic ◽  
Peter Schwintzer

Sign in / Sign up

Export Citation Format

Share Document