scholarly journals Anisotropic thermal transport properties of quartz: from −120 °C through the <i>α</i>–<i>β</i> phase transition

2021 ◽  
Vol 33 (1) ◽  
pp. 23-38
Author(s):  
Simon Breuer ◽  
Frank R. Schilling

Abstract. Thermal diffusivities of synthetic quartz single crystals have been measured between −120 and 800 ∘C using a laser flash method. At −120 ∘C, the lattice thermal diffusivities are D[001]=15.7(8) mm2 s−1 and D[100]=8.0(4) mm2 s−1 in the [001] and [100] directions, respectively. Between −80 and 560 ∘C, the temperature dependence is well approximated by a D(T)=1/Tn dependency (with n=1.824(29) and n=1.590(21) for the [001] and [100] directions), whereas for lower temperatures measured thermal diffusivities show smaller values. The anisotropy of the thermal diffusivity D[001]∕D[100] decreases linearly over T in α- and β-quartz, with a discontinuity at the α–β phase transition at Tα,β=573 ∘C. In the measured signal–time curves of α-quartz, an unusual radiative heat transfer is observed, which can be linked to the phase transition. However, the effect is already observed far below the actual transition temperature. The standard evaluation procedure insufficiently describes the behaviour and leads to an underestimation of the thermal diffusivity of ≥20 %. Applying a new semi-empirical model of radiation absorption and re-emission reproduces well the observed radiative heat transfer originating in the phase transition. In the β-quartz region, the radiative heat transfer is not influenced by the phase transition effect observed in α-quartz and for the thermal diffusivity evaluation common models for (semi)transparent samples can be used.

2005 ◽  
Vol 36 (6) ◽  
pp. 475-480 ◽  
Author(s):  
A. V. Stepanov ◽  
N. I. Sulzhik ◽  
V. N. Nikolaenko

Sign in / Sign up

Export Citation Format

Share Document