tube furnaces
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 249 ◽  
pp. 393-400
Author(s):  
Vladimir Bazhin ◽  
Bashar Issa

Transportation and refining of heavy metal-bearing oil are associated with the problems of localized destruction of metal structures and elements due to corrosion. In the process of equipment operation, it was revealed that premature failure of steel coils of heating tube furnaces at oil refineries and petrochemical plants was associated with insufficient strength and corrosion resistance of the steelwork. The study of the effect that structure and phase composition of 15KH5M-alloy steel elements of heating furnaces at oil refineries have on the corrosion properties, associated with mass loss and localized destructions in the process of heat treatment, allows to develop protective measures and determine heating modes with a rate-limiting step of oxidation. The rate of various corrosion types of 15KH5M steel is used as an indicator to assess the effectiveness of the applied modes of coil heat treatment in order to increase their corrosion resistance and improve their operational characteristics. Conducted experiments on heat treatment of certain steel coil sections allowed to determine rational heating modes for the studied coils, which made it possible to reduce their mass loss and increase corrosion resistance of working surfaces in the process of operation. Proposed heat treatment of steel coils at specified intervals of their operation in the tube furnaces creates conditions for their stable performance and affects the degree of industrial and environmental safety, as well as reduces material costs associated with the repair and replacement of individual assemblies and parts of tube furnaces.


2021 ◽  
pp. 119-131
Author(s):  
Yurii Stupak ◽  
Tatyana Khokhlova

The article considers some aspects of the pulverized fuel combustion modelling in the laboratory on installations called vertical tube furnaces (referred to as drop tube furnaces in scientific periodicals). We have considered the scheme of the installation to study the process of pulverized coal (PС) combustion in conditions similar to the conditions of heating and ignition of coal particles in the blast flow of the blast furnace and their subsequent gasification in the raceway. We have formulated the basic requirements for ensuring the reliability of modelling results. We have examined the methods of combustion completeness (burnout) estimation used in similar studies. We have proposed a convenient method for the estimation of the burnout of two-component fuel mixtures. According to this method, the estimation can be performed for any ratio of components in a two-component fuel mixture with the use of data on the initial ash content in each of them and the relevant burnout. We have obtained the estimated data on the dependence of the burnout of PC (anthracite, lean coal) with fuel additives. It has been shown that the proposed approach can be used to evaluate experimental data regarding the study of the combustion completeness of fuel mixtures. It has been established that for the initial stages of PC combustion (heating, emission and ignition of volatile matters), which occur before the fuel particles enter the blast furnace raceway, the fuel mixtures burnout values recorded in the experiments do not differ significantly from the estimated ones. For the final stages of PC combustion (heating and burnout of char), which occur mainly in the raceway and outside, the combustion completeness determined in laboratory studies was significantly higher than the estimated one. The obtained results confirmed the efficiency in the use of drop tube furnace to model the PC combustion process during the fuel injection with the heated blast flow in the blast furnace raceways and study of the influence of various factors on the combustion process. The results of such studies can be used to improve the design of PC injection units in the blast furnace and to study the possibilities for improving the coal particles combustion completeness and the specific consumption of PC.


Author(s):  
Alexander V. Golikov ◽  
Dmitry I. Subbotin

Relevance. Due to the widespread use in practice, tubular furnaces were chosen as the object of study of this work. The article provides an analysis of damage to the supporting structures of oil refining tubular furnaces. The causes of damage and the physical nature of the development of damage are established. According to the results of field surveys, it was found that about 10% of the furnaces are operated with damage in the form of significant curvature of the supporting structures that developed as a result of the explosion of the gas-air mixture and the technological product inside the furnace space. The aim of the work is to analyze the damage and assess the impact of damage on the operation of the supporting structures of furnaces. Methods. The main research results were obtained by static numerical analysis of spatial models of furnace frameworks in the LIRA-SAPR software package. This complex belongs to the class of software products that implement the finite element method. Results. According to the results of calculating a series of models of structures, the effect of damage on the operation of the supporting structures of the furnace is determined. Based on the analysis of calculation data for models of tube furnaces with damage and comparison of calculation results for furnace models with structural damage identified during the survey, ways to optimize the design decisions of an industrial furnace are determined. Studies have shown the need to improve the design of tube furnaces in the direction of improving technology and improving the structural form of the supporting frame of the furnace.


2020 ◽  
Vol 75 (11) ◽  
pp. 895-901
Author(s):  
Fabian Eustermann ◽  
Matthias Eilers-Rethwisch ◽  
Maximilian K. Reimann ◽  
Oliver Janka

AbstractThe intermetallic solid solution CePd1−xAuxAl (x = 0.1–0.9) has been synthesized from the elements by arc-melting and subsequent annealing in induction followed by tube furnaces. The samples were characterized using the Guinier powder diffraction technique and the structures of the nominal compositions CeAuAl and CePd0.2Au0.8Al were refined from single crystal X-ray diffractometer data. For small values of x = 0.1–0.3, the compounds crystallize in the hexagonal ZrNiAl-type structure (space group P$‾{6}$2m), while for x = 0.5–0.9 the orthorhombic TiNiSi-type structure (space group Pnma) was observed. In both structure types, the transition metal and aluminum atoms form a complex polyanionic network with the cerium atoms filling the respective cavities. The transition metal atoms are in both cases surrounded in the shape of a tri-capped trigonal prism, the connectivity of these units, however, is different. Temperature-dependent magnetic susceptibility measurements of all compounds indicated a stable trivalent oxidation state for the cerium atoms along with antiferromagnetic ordering around TN ∼ 3 K.


Author(s):  
Javier Pirón ◽  
Olivier Hamart

Abstract A new modified 9 wt% Cr steel has been developed in order to improve the resistance against coke deposition on the internal surface of refinery tube furnaces, in comparison to widely used grades, such as Grade 5 (5 wt% Cr) or Grade 9 (9 wt% Cr). The new grade has an improved composition, based on Cr and Si and further additions of Cu and Ni. This optimal chemical analysis has been specified after extensive laboratory testing on different laboratory and industrial heats. Thermogravimetric analyses have been performed to benchmark various materials (ferritic and austenitic grades) in terms of coking rate. Specimens of these alloys have been exposed to this coking atmosphere in a wide temperature range. The new modified 9Cr steel exhibits an almost 10 times lower coking rates than typical Grade 9 steel. The new 9Cr steel shows allowable stress levels up to 90% higher than Grade 9 at temperatures below 500°C (time independent regime) and up to 7% higher stress levels at temperatures above 500°C (creep regime). The industrial feasibility of production of elbows has been successfully implemented and a welding solution using a commercially available filler material has been established.


Author(s):  
Ankit Bansal ◽  
◽  
Ravi Butola ◽  
M S Niranjan ◽  
Qasim Murtaza ◽  
...  

The magnetic field-assisted surface finishing process needs a sintered magnetic abrasive powder which could be a mixture of SiC and CIP particles. Tube furnaces have been used to develop SiC-based sintered magnetic abrasives. The focus of this article is to investigate the anticipated results and to carry out the fabrication setup of sintered magnetic abrasive for the super-finishing of composite materials and their coating. The article depicts a significant effect on the mechanical properties such as microhardness and compressive strength and analyzes SiC and CIP composite-based microstructure. The synthesis of the powder involves four major processes like blending; compaction and sintering. Characterization of sintered magnetic abrasives has been done using SEM, EDS, XRD to study morphology, chemical composition, crystallography, and magnetic properties. The results have been compared with the un-bonded magnetic abrasives. This paper also presents a brief literature review of the state-of-the-art technology of high-performance surface finishing processes used in manufacturing industries. Finally, the downside and stray aspects of the related literature are spotlighted and a list of prospective issues for future research directions is recommended.


2020 ◽  
Vol 6 (6) ◽  
pp. 42-47
Author(s):  
A. Abdullin

The influence of the spectral model of radiation on heat fluxes and the temperature of combustion products in the radiant chambers of tube furnaces of the petrochemical industry is analyzed. A wide-band model and a Hottel gray model are considered. It is shown that the spectral model of the combustion medium radiation weakly affects the calculated characteristics of the total heat transfer.


Sign in / Sign up

Export Citation Format

Share Document