scholarly journals Supplementary material to "Emulating Earth System Model temperatures: from global mean temperature trajectories to grid-point level realizations on land"

Author(s):  
Lea Beusch ◽  
Lukas Gudmundsson ◽  
Sonia I. Seneviratne
2020 ◽  
Vol 11 (1) ◽  
pp. 139-159 ◽  
Author(s):  
Lea Beusch ◽  
Lukas Gudmundsson ◽  
Sonia I. Seneviratne

Abstract. Earth system models (ESMs) are invaluable tools to study the climate system's response to specific greenhouse gas emission pathways. Large single-model initial-condition and multi-model ensembles are used to investigate the range of possible responses and serve as input to climate impact and integrated assessment models. Thereby, climate signal uncertainty is propagated along the uncertainty chain and its effect on interactions between humans and the Earth system can be quantified. However, generating both single-model initial-condition and multi-model ensembles is computationally expensive. In this study, we assess the feasibility of geographically explicit climate model emulation, i.e., of statistically producing large ensembles of land temperature field time series that closely resemble ESM runs at a negligible computational cost. For this purpose, we develop a modular emulation framework which consists of (i) a global mean temperature module, (ii) a local temperature response module, and (iii) a local residual temperature variability module. Based on this framework, MESMER, a Modular Earth System Model Emulator with spatially Resolved output, is built. We first show that to successfully mimic single-model initial-condition ensembles of yearly temperature from 1870 to 2100 on grid-point to regional scales with MESMER, it is sufficient to train on a single ESM run, but separate emulators need to be calibrated for individual ESMs given fundamental inter-model differences. We then emulate 40 climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to create a “superensemble”, i.e., a large ensemble which closely resembles a multi-model initial-condition ensemble. The thereby emerging ESM-specific emulator parameters provide essential insights on inter-model differences across a broad range of scales and characterize core properties of each ESM. Our results highlight that, for temperature at the spatiotemporal scales considered here, it is likely more advantageous to invest computational resources into generating multi-model ensembles rather than large single-model initial-condition ensembles. Such multi-model ensembles can be extended to superensembles with emulators like the one presented here.


2021 ◽  
Author(s):  
Shruti Nath ◽  
Quentin Lejeune ◽  
Lea Beusch ◽  
Carl Schleussner ◽  
Lukas Gudmundsson ◽  
...  

<p>Emulators are computationally cheap statistical devices that derive simplified relationships from otherwise complex climate models. A recently developed Earth System Model (ESM) emulator, MESMER (Beusch et al. 2020), uses a combination of pattern scaling and a variability emulator to emulate ESM initial-condition ensembles. Linear scaling provides the spatially resolved yearly temperature trend projections from global mean temperature trend values. In addition, the variability emulator stochastically models spatio-temporally correlated local variability, yielding a convincing imitation of the internal climate variability displayed within a multi-model initial condition ensemble. The work presented here extends MESMER’s framework to have a monthly downscaling module, so as to provide spatially resolved monthly temperature values from spatially resolved yearly temperature values. For this purpose, a harmonic model is trained on monthly ESM output to capture monthly cycles and their evolution with changing temperature. Once the mean monthly cycle is sufficiently emulated, a process based understanding of the biases within the harmonic model is undertaken. Such entails employing a Gradient Boosting Regressor tree model (GBR) to explain the residuals from the harmonic model using biophysical climate variables such as albedo and thermal fluxes as explanatory variables. These variables can be rated according to their explanatory power when categorising residuals which furthermore elucidates the main physical processes driving biases in the harmonic model within seasons at the grid point level. Finally we add residual variability ontop of the harmonic model outputs to provide convincing imitations of ESM monthly temperature realisations. The residual variability is generated using an AR(1) process coupled to a multivariate trans-gaussian process so as to maintain spatio-temporal correlations and the non-stationarity in monthly variability with increasing yearly temperatures.</p><p>Beusch, L., Gudmundsson, L., & Seneviratne, S. I. (2020). Emulating Earth System Model temperatures: from global mean temperature trajectories to grid-point level realizations on land. Earth System Dynamics, 11(1), 139–159. https://doi.org/10.5194/esd-11-139-2020</p><p> </p><p> </p>


2020 ◽  
Author(s):  
Lea Beusch ◽  
Lukas Gudmundsson ◽  
Sonia I. Seneviratne

<p>Earth System Models (ESMs) are invaluable tools to study the climate system’s response to a specific greenhouse gas emission scenario, but their projections are associated with internal climate variability and model uncertainty. To account for these uncertainties, large single-model initial-condition ensembles and multi-model ensembles are created and observations are used to constrain their projections. However, ensemble size is usually limited since ESM simulations are computationally costly. Climate change impact and integrated assessment models, <span>on the other hand</span>, could profit from more realizations which are consistent with observations and the associated improved sampling of the constrained phase space.</p><p>Here, we <span>employ</span> MESMER, a Modular Earth System Model Emulator with spatially Resolved output, <span>to</span> generate stochastic realizations of land temperature field time series at a yearly resolution at a negligible computational cost (Beusch et al., 20<span>19</span>). MESMER successfully approximates large multi-model initial-condition ensembles on grid-point to regional scales if it is trained <span>with</span> runs from each contained ESM. <span>Here, w</span>e create 1000 emulations <span>per ESM for models</span> of the 6<sup>th</sup> phase of the Coupled Model Intercomparison Project (CMIP6) covering the historical time period and the high-end emission scenario SSP585 (1870 – 2100) (Beusch et al., submitted). The resulting ensemble is referred to as a “superensemble”.</p><p>The modular framework of MESMER opens new avenues for validating and constraining ESM ensembles (Beusch et al., submitted). Within the emulator, the local warming signal is expressed as a combination of the global mean temperature trend and the local response to this global trend. These two features can be validated separately by <span>comparison</span> to observations. It is found that ESMs which perform well in terms of global mean temperature trend do not necessarily perform well in terms of local response and vice versa. Additionally, different ESMs perform well in different regions. The most naive approach would be to base temperature projections solely on ESMs which perform well on both global and <span>regional</span> scales. However, this would result in discarding valuable information from many ESMs which perform well at only one of the scales. <span>To circumvent this issue</span>, we therefore propose to use MESMER to combine all global mean temperature trends with all local modules <span>that</span> are consistent with observations. Thereby, we obtain a regionally-optimized “crossbred” superensemble which <span>constitutes</span> a large recombined multi-model initial-condition ensemble and makes full use of all ESM features which are consistent with observations. The regionally diverse behavior of the crossbred superensemble highlights the importance of considering spatially resolved temperature projections.</p><p> </p><p>L. Beusch, L. Gudmundsson, and S. I. Seneviratne: Emulating Earth System Model Temperatures: from Global Mean Temperature Trajectories to Grid-point Level Realizations on Land, doi: 10.5194/esd-2019-34, 20<span>19</span> (accepted <span>for</span> ESD).</p><p>L. Beusch, L. Gudmundsson, and S. I. Seneviratne: Crossbreeding CMIP6 Earth System Models with an Emulator for Regionally-optimized Land Temperature Projections, submitted.</p>


2012 ◽  
Vol 12 (22) ◽  
pp. 10887-10898 ◽  
Author(s):  
A. Jones ◽  
J. M. Haywood

Abstract. The radiative impact and climate effects of geoengineering using sea-spray aerosols have been investigated in the HadGEM2-ES Earth system model using a fully prognostic treatment of the sea-spray aerosols and also including their direct radiative effect. Two different emission patterns were considered, one to maximise the direct effect in clear skies, the other to maximise the indirect effects of the sea-spray on low clouds; in both cases the emissions were limited to 10% of the ocean area. While the direct effect was found to be significant, the indirect effects on clouds were much more effective in reducing global mean temperature as well as having less of an impact on global mean precipitation per unit temperature reduction. The impact on the distribution of precipitation was found to be similar in character, but less in degree, to that simulated by a previous study using a much simpler treatment of this geoengineering process.


2012 ◽  
Vol 12 (8) ◽  
pp. 20717-20743 ◽  
Author(s):  
A. Jones ◽  
J. M. Haywood

Abstract. The radiative impact and climate effects of geoengineering using sea-spray aerosols have been investigated in the HadGEM2-ES Earth system model using a fully prognostic treatment of the sea-spray aerosols and also including their direct raditive effect. Two different emission patterns were considered, one to maximise the direct effect in clear skies, the other to maximise the indirect effects of the sea-spray on low clouds; in both cases the emissions were limited to 10% of the ocean area. While the direct effect was found to be significant, the indirect effects on clouds were much more effective in reducing global mean temperature. Moreover, the impact on global mean precipitation per unit temperature reduction was found to be greatest when the emission pattern for maximising the direct effect was used, suggesting that targeting the direct effect of sea-spray is not a good strategy. The impact on the distribution of precipitation was found to be similar in character, but less in degree, than that simulated by a previous study using a much simpler treatment of this geoengineering process.


2021 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Elisa Bergas-Massó ◽  
María Gonçalves-Ageitos ◽  
Carlos Pérez García-Pando ◽  
Twan van Noije ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document