scholarly journals Hydrometeorological observations from the rain-to-snow transition zone: a dataset from the Johnston Draw catchment, Reynolds Creek Experimental Watershed, Idaho, USA

2016 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
Clarissa L. Enslin ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of downslope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (doi:10.15482/USDA.ADC/1402076). The Johnston Draw watershed (1.8 km2), ranging from 1497–1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south- facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incoming shortwave radiation, precipitation, wind speed and direction, and soil moisture and temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.


2018 ◽  
Vol 10 (3) ◽  
pp. 1207-1216 ◽  
Author(s):  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
Clarissa L. Enslin ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of downslope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (https://doi.org/10.15482/usda.adc/1402076). The Johnston Draw watershed (1.8 km2), ranging from 1497 to 1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incoming shortwave radiation, precipitation, wind speed and direction, soil moisture, and soil temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating hydrological models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.


2016 ◽  
Author(s):  
Clarissa L. Enslin ◽  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of down slope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (DOI:10.15482/USDA.ADC/1258769). The Johnston Draw watershed (1.8 sq. km), ranging from 1497–1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of shortwave radiation, precipitation, wind speed and direction, and soil moisture and temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.


Author(s):  
B. B. Shkursky

Theoretical modeling of regular olivine grains misorientations in mimetic paramorphoses after ringwoodite and wadsleyite, the formation of which during the ascension of matter from the Mantle Transition Zone is expected, has been carried out. The coordinates of the misorientation axes and the misorientation angles, characterizing 10 operations of alignment in the pair intergrowths of olivine grains, eight of which are twins, are calculated. Possible conditions for the formation of mimetic paramorphoses predicted here, and the chances of their persistence are discussed. The calculated orientations are compared with the known twinning laws of olivine.


2010 ◽  
Vol 38 (4) ◽  
pp. 286-307
Author(s):  
Carey F. Childers

Abstract Tires are fabricated using single ply fiber reinforced composite materials, which consist of a set of aligned stiff fibers of steel material embedded in a softer matrix of rubber material. The main goal is to develop a mathematical model to determine the local stress and strain fields for this isotropic fiber and matrix separated by a linearly graded transition zone. This model will then yield expressions for the internal stress and strain fields surrounding a single fiber. The fields will be obtained when radial, axial, and shear loads are applied. The composite is then homogenized to determine its effective mechanical properties—elastic moduli, Poisson ratios, and shear moduli. The model allows for analysis of how composites interact in order to design composites which gain full advantage of their properties.


2017 ◽  
Vol 120 (3) ◽  
pp. 421-432 ◽  
Author(s):  
C. Browning ◽  
M. Reid

AbstractThe Lower Carboniferous, probably Tournaisian, Kweekvlei Formation is part of the Witteberg Group (Cape Supergroup) of South Africa. Together with the overlying Floriskraal Formation, it forms an upward-coarsening succession within the Lake Mentz Subgroup. Sedimentary features of the Kweekvlei Formation suggest deposition in a storm-wave dominated marine setting, within the storm-influenced, distal part of an offshore transition zone environment. This predominantly argillaceous formation preserves a low diversity trace fossil assemblage. Reworked vascular plant debris (including the problematic genus Praeramunculus sp.) and a shark spine have been reported for the Kweekvlei Formation. There are no known stratigraphic equivalents in South Africa.


Sign in / Sign up

Export Citation Format

Share Document