interfacial transition zone
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 93)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Vol 152 ◽  
pp. 106680
Author(s):  
Manda Ramaniraka ◽  
Sandrine Rakotonarivo ◽  
Cédric Payan ◽  
Vincent Garnier

2021 ◽  
Vol 33 (12) ◽  
pp. 04021348
Author(s):  
Sang-Yeop Chung ◽  
Ji-Su Kim ◽  
Paul H. Kamm ◽  
Dietmar Stephan ◽  
Tong-Seok Han ◽  
...  

2021 ◽  
Vol 2083 (2) ◽  
pp. 022082
Author(s):  
Binbin Na ◽  
Bin Yan

Abstract The influence of curing temperature on the bond strength of ITZ was studied in this paper. It is found that, Increasing curing temperature can improve the bond strength of ITZ in the early age, but it will significantly decreases the growth trend of the bond strength. The micro-morphology characteristics were examined by the method of scanning electron microscopy, It was found that, the higher the curing temperature is, the more uneven the hydration products distribution of ITZ is, and also the looser the ITZ structure is.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032023
Author(s):  
Grigory Yakovlev ◽  
Zarina Saidova ◽  
Rostislav Drochytka ◽  
Anastasiya Gordina ◽  
Igor Pudov ◽  
...  

Abstract This study is aimed at increasing the adhesion of the fibre-reinforced polymer rods to the binder in the cement-based composites in order to eliminate the problem of rod slippage under loading and broaden the application of composite reinforcement in the construction industry. It is assumed that the better adhesion of reinforcement rod to the cement matrix can be provided by increasing the cement stone structural density, and, in particular, by compacting the structure of the hydration products formed on the surface the fibre-reinforced polymer reinforcement rod. Such increase in strength and density can be achieved by adding nanodispersed additives such as metakaolin, the dispersion of carbon black and Peneco Nano Stachema primer into the composition of the cement matrix. Additional adhesion of the cement matrix to the reinforcement is ensured by coating it with the primer, which seals the structure of the cement matrix located in the interfacial transition zone between the reinforcing bar and the cement stone. Experimental study proved that the proposed approach allows the formation of a strong and dense structure in the interfacial transition zone between the cement matrix and the fibre-reinforced polymer reinforcement rod surface. The introduction of metakaolin and a dispersion of technical soot led to an increase in the adhesion strength of fibre-reinforced polymer rod with a cement matrix by 27% and 29%, respectively. The IR spectral analysis and DTA analysis results showed that the mineralogy and morphology of the hydration products was changed due to the addition of the modifying additives, thus improving the adhesion characteristics and corrosion resistance of fibre- reinforced polymer in the cement-based composites.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shibing Zhang ◽  
Zhen Sun ◽  
Junli Zhou ◽  
Bo Yang ◽  
Jiuchang Zhang ◽  
...  

Interfacial transition zone (ITZ) is an important component of a concrete-like material. Accurately simulating the ITZ's characteristics of the concrete-like materials is a difficult process in numerical simulation. This article proposed a random three-phase mesostructural modeling method using the incorporation of random aggregate generation, Minkowski sum theory, and polygon union techniques. It was found that this method can better simulate the mesostructure and ITZ characteristics of concrete-like materials. By using this method, a random three-phase mesostructural model had been built for conducting a finite element analysis to investigate the effective permeability parameters of concrete. A good agreement between numerical and experimental results indicates the feasibility of this method in the concrete-like material analysis.


2021 ◽  
Vol 19 (4) ◽  
pp. 294-307
Author(s):  
Ehsan Adili ◽  
Ali Kheyroddin

Fiber-reinforced concrete (FRC), which has become quite popular in recent years, improves many of concrete’s mechanical properties. It uses fibers discretely and is utilized in different structures. This paper proposes, between steel fibers and concrete, a fiber interfacial transition zone (FITZ) which is the most vulnerable part of steel FRC (SFRC) because it has a high cracking and microcracking potential due to fiber-concrete separation. In the prepared specimens, steel fibers were added to concrete in hooked and twisted forms, the SFRC microstructure was studied in both cases under a scanning electron microscope (SEM), and the related images were compared as secondary electron (SE) images. The SEM analysis showed highly precise images of the cracks and their microstructures in the FITZ and lab results show that the newly defined FITZ illustrates the cracking patterns well for both fiber types. Because twisted fibers have cracking angles and larger contact surfaces, the concrete-fiber bond is increased and the related crack widths decrease considerably. A comparison of the crack widths showed that those in the FITZ of specimens with twisted fibers decreased by a factor of approximately seven compared to those with hooked fibers.


Sign in / Sign up

Export Citation Format

Share Document