scholarly journals Eleven years of mountain weather, snow, soil moisture and stream flow data from the rain-snow transition zone – the Johnston Draw catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA

2017 ◽  
Author(s):  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
Clarissa L. Enslin ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of downslope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (doi:10.15482/USDA.ADC/1402076). The Johnston Draw watershed (1.8 km2), ranging from 1497–1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south- facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incoming shortwave radiation, precipitation, wind speed and direction, and soil moisture and temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.

2018 ◽  
Vol 10 (3) ◽  
pp. 1207-1216 ◽  
Author(s):  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
Clarissa L. Enslin ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of downslope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (https://doi.org/10.15482/usda.adc/1402076). The Johnston Draw watershed (1.8 km2), ranging from 1497 to 1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incoming shortwave radiation, precipitation, wind speed and direction, soil moisture, and soil temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating hydrological models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.


2016 ◽  
Author(s):  
Clarissa L. Enslin ◽  
Sarah E. Godsey ◽  
Danny Marks ◽  
Patrick R. Kormos ◽  
Mark S. Seyfried ◽  
...  

Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of down slope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (DOI:10.15482/USDA.ADC/1258769). The Johnston Draw watershed (1.8 sq. km), ranging from 1497–1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of shortwave radiation, precipitation, wind speed and direction, and soil moisture and temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 521
Author(s):  
Caroline Martin ◽  
Stephanie K. Kampf ◽  
John C. Hammond ◽  
Codie Wilson ◽  
Suzanne P. Anderson

Developing accurate stream maps requires both an improved understanding of the drivers of streamflow spatial patterns and field verification. This study examined streamflow locations in three semiarid catchments across an elevation gradient in the Colorado Front Range, USA. The locations of surface flow throughout each channel network were mapped in the field and used to compute active drainage densities. Field surveys of active flow were compared to National Hydrography Dataset High Resolution (NHD HR) flowlines, digital topographic data, and geologic maps. The length of active flow declined with stream discharge in each of the catchments, with the greatest decline in the driest catchment. Of the tributaries that did not dry completely, 60% had stable flow heads and the remaining tributaries had flow heads that moved downstream with drying. The flow heads were initiated at mean contributing areas of 0.1 km2 at the lowest elevation catchment and 0.5 km2 at the highest elevation catchment, leading to active drainage densities that declined with elevation and snow persistence. The field mapped drainage densities were less than half the drainage densities that were represented using NHD HR. Geologic structures influenced the flow locations, with multiple flow heads initiated along faults and some tributaries following either fault lines or lithologic contacts.


2006 ◽  
Vol 19 (23) ◽  
pp. 6122-6138 ◽  
Author(s):  
Gregory R. Foltz ◽  
Michael J. McPhaden

Abstract The role of horizontal oceanic heat advection in the generation of tropical North and South Atlantic sea surface temperature (SST) anomalies is investigated through an analysis of the oceanic mixed layer heat balance. It is found that SST anomalies poleward of 10° are driven primarily by a combination of wind-induced latent heat loss and shortwave radiation. Away from the eastern boundary, horizontal advection damps surface flux–forced SST anomalies due to a combination of mean meridional Ekman currents acting on anomalous meridional SST gradients, and anomalous meridional currents acting on the mean meridional SST gradient. Horizontal advection is likely to have the most significant effect on the interhemispheric SST gradient mode through its impact in the 10°–20° latitude bands of each hemisphere, where the variability in advection is strongest and its negative correlation with the surface heat flux is highest. In addition to the damping effect of horizontal advection in these latitude bands, evidence for coupled wind–SST feedbacks is found, with anomalous equatorward (poleward) SST gradients contributing to enhanced (reduced) westward surface winds and an equatorward propagation of SST anomalies.


2021 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Tomáš Dostál ◽  
David Zumr

<p>A better understanding of hydrological processes in agricultural catchments is not only crucial to hydrologists but also helpful for local farmers. Therefore, we have built the freely-available web-based WALNUD dataset (Water in Agricultural Landscape – NUčice Database) for our experimental catchment Nučice (0.53 km<sup>2</sup>), the Czech Republic. We have included observed precipitation, air temperature, stream discharge, and soil moisture in the dataset. Furthermore, we have applied numerical modelling techniques to investigate the hydrological processes (e.g. soil moisture variability, water balance) at the experimental catchment using the dataset.</p><p>The Nučice catchment, established in 2011, serves for the observation of rainfall-runoff processes, soil erosion and water balance of the cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9 %, and the climate is humid continental (mean annual temperature 7.9 °C, average annual precipitation 630 mm). The catchment consists of three fields covering over 95 % of the area. There is a narrow stream which begins as a subsurface drainage pipe in the uppermost field draining the water at catchment. The typical crops are winter wheat, rapeseed, mustard and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed in the area of the basin, and an H flume to monitor the stream discharge, water turbidity and basic water quality indicators. The soil water content (at point scale) and groundwater level are also recorded. Recently, we have installed two cosmic-ray soil moisture sensors (StyX Neutronica) to estimate large-scale topsoil water content at the catchment.</p><p>Even though the soil management and soil properties in the fields of Nučice seem to be nearly homogeneous, we have observed variability in the topsoil moisture pattern. The method for the explanation of the soil water regime was the combination of the connectivity indices and numerical modelling. The soil moisture profiles from the point-scale sensors were processed in a 1-D physically-based soil water model (HYDRUS-1D) to optimize the soil hydraulic parameters. Further, the soil hydraulic parameters were used as input into a 3D spatially-distributed model, MIKE-SHE. The MIKE-SHE simulation has been mainly calibrated with rainfall-runoff observations. Meanwhile, the spatial patterns of the soil moisture were assessed from the simulation for both dry and wet catchment conditions. From the MIKE-SHE simulation, the optimized soil hydraulic parameters have improved the estimation of soil moisture dynamics and runoff generation. Also, the correlation between the observed and simulated soil moisture spatial patterns showed different behaviors during the dry and wet catchment conditions.</p><p>This study has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/156/OHK1/3T/11 and the Project SHui which is co-funded by the European Union Project: 773903 and the Chinese MOST.</p>


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Santiago Martín Costas ◽  
Norma Canton ◽  
Juan Manuel Rodríguez

Abstract The altitudinal patterns of lichen communities in altitudinal gradients are very variable. The changes that occur along the mountains depend on climatic factors but also on microsite variables such as substrate type and aspect. The effect of altitude and aspect on richness, cover and composition of saxicolous lichens communities along an elevation gradient in extra Andean mountains from the central-west of Argentina was studied. Rock outcrops on the north and south aspect of three mountain summits distributed between 2,500 and 4,500 m.a.s.l. were sampled. Lichen species present in a 20 × 20 cm square were identified and the relative cover was measured using digital photography. Richness, cover and composition were analyzed through linear models and multivariate analysis. Fifty-eight saxicolous lichen species were identified between the three sites. Richness and cover were maximum at middle altitude. Also compositional differences among communities of each mountain summit were found. Finally, the effect of the aspect was significant at lower altitudes for cover and composition.


2013 ◽  
Vol 6 (2) ◽  
pp. 811-835 ◽  
Author(s):  
P. R. Kormos ◽  
D. Marks ◽  
C. J. Williams ◽  
H. P. Marshall ◽  
P. Aishlin ◽  
...  

Abstract. A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies. Data are available at doi:10.1594/PANGAEA.819837.


2011 ◽  
Vol 139 (2) ◽  
pp. 494-510 ◽  
Author(s):  
Yang Yang ◽  
Michael Uddstrom ◽  
Mike Revell ◽  
Phil Andrews ◽  
Hilary Oliver ◽  
...  

Abstract Historically most soil moisture–land surface impact studies have focused on continents because of the important forecasting and climate implications involved. For a relatively small isolated mountainous landmass in the ocean such as New Zealand, these impacts have received less attention. This paper addresses some of these issues for New Zealand through numerical experiments with a regional configuration of the Met Office Unified Model atmospheric model. Two pairs of idealized simulations with only contrasting dry or wet initial soil moisture over a 6-day period in January 2004 were conducted, with one pair using realistic terrain and the other pair flat terrain. For the mean of the 6 days, the differences in the simulated surface air temperature between the dry and moist cases were 3–5 K on the leeside slopes and 1–2 K on the windward slopes and the central leeside coastal region of the South Island in the afternoon. This quite nonuniform response in surface air temperature to a uniformly distributed soil moisture content and soil type is mainly attributed to modification of the effects of soil moisture by mountains through two different processes: 1) spatial variation in cloud coverage across the mountains ranges leading to more shortwave radiation at ground surface on the leeside slope than the windward slope, and 2) the presence of a dynamically and thermally induced onshore flow on the leeside coast bringing in air with a lower sensitivity to soil moisture. The response of local winds to soil moisture content is through direct or indirect effects. The direct effect is due to the thermal contrast between land and sea/land shown for the leeside solenoidal circulations, and the indirect effect is through the weakening of the upstream blocking of the South Island for dryer soils shown by the weakening and onshore shift of the upstream deceleration and forced ascent of incoming airflow.


2007 ◽  
Vol 20 (9) ◽  
pp. 1936-1946 ◽  
Author(s):  
Chunmei Zhu ◽  
Dennis P. Lettenmaier

Abstract Studying the role of land surface conditions in the Mexican portion of the North American monsoon system (NAMS) region has been a challenge due to the paucity of long-term observations. A long-term gridded observation-based climate dataset suitable for forcing land surface models, as well as model-derived land surface states and fluxes for a domain consisting of all of Mexico, is described. The datasets span the period of January 1925–October 2004 at 1/8° spatial resolution at a subdaily (3 h) time step. The simulated runoff matches the observations plausibly over most of the 14 small river basins spanning all of Mexico, which suggests that long-term mean evapotranspiration is realistically reproduced. On this basis, and given the physically based model parameterizations of soil moisture and energy fluxes, the other surface fluxes and state variables such as soil moisture should be represented reasonably. In addition, a comparison of the surface fluxes from this study is performed with North American Regional Reanalysis (NARR) data on a seasonal mean basis. The results indicate that downward shortwave radiation is generally smaller than in the NARR data, especially in summer. Net radiation, on the other hand, is somewhat larger in the Variable Infiltration Capacity (VIC) hydrological model than in the NARR data for much of the year over much of the domain. The differences in radiative and turbulent fluxes are attributed to (i) the parameterization used in the VIC forcings for solar and downward longwave radiation, which links them to the daily temperature and temperature range, and (ii) differences in the land surface parameterizations used in VIC and the NCEP–Oregon State University–U.S. Air Force–NWS/Hydrologic Research Lab (Noah) land scheme used in NARR.


Sign in / Sign up

Export Citation Format

Share Document