scholarly journals A multi-sensor satellite-based archive of the largest SO<sub>2</sub> volcanic eruptions since 2006

2020 ◽  
Author(s):  
Pierre-Yves Tournigand ◽  
Valeria Cigala ◽  
Elzbieta Lasota ◽  
Mohammed Hammouti ◽  
Lieven Clarisse ◽  
...  

Abstract. We present a multi-sensor archive collecting spatial and temporal information about volcanic SO2 clouds generated by the eleven largest eruptions of this century. The detection and monitoring of volcanic clouds is an important topic for aviation management, climate issues and weather forecast. Several papers have been published focusing on single events, but not any archive is available at the moment to be used as background for future studies. We archived and collocated the SO2 vertical column density estimations from three different instruments (AIRS, IASI and GOME-2), the atmospheric parameters vertical profiles from the Global Navigation Satellite Systems (GNSS) Radio Occultations (RO) and the vertical backscatter from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). We additionally provide information about the cloud top height from three different algorithms and the atmospheric anomaly due to the presence of the cloud. The dataset consists of 223 days monitored with SO2 clouds, collocated with 56675 backscatter profiles and 70126 radio occultation profiles. The modular structure of the archive allows an easy collocation of the different datasets according to the users’ needs and the cross-comparison of the datasets shows the high consistency of the parameters estimated with different sensors and algorithms. The data described here will be published with a DOI after final acceptance of this manuscript (Tournigand et al., 2020, http://doi.org/10.5880/fidgeo.2020.016). During the discussion period, the data are accessible via this temporary link: http://pmd.gfz-potsdam.de/panmetaworks/review/0f85d699707efcdc567765bd0dafaaadf94b6df5a531f310167f7e974ea803bf

2020 ◽  
Vol 12 (4) ◽  
pp. 3139-3159
Author(s):  
Pierre-Yves Tournigand ◽  
Valeria Cigala ◽  
Elzbieta Lasota ◽  
Mohammed Hammouti ◽  
Lieven Clarisse ◽  
...  

Abstract. We present a multi-sensor archive collecting spatial and temporal information about volcanic SO2 clouds generated by the 11 largest eruptions of this century. The detection and monitoring of volcanic clouds are an important topic for aviation management, climate issues and weather forecasts. Several studies focusing on single eruptive events exist, but no archive available at the moment combines quantitative data from as many instruments. We archived and collocated the SO2 vertical column density estimations from three different satellite instruments (AIRS, IASI and GOME-2), atmospheric parameters as vertical profiles from the Global Navigation Satellite Systems (GNSS) Radio Occultations (RO), and the cloud-top height and aerosol type from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Additionally, we provide information about the cloud-top height from three different algorithms and the atmospheric anomaly due to the presence of the cloud. The dataset is gathering 206 d of SO2 data, collocated with 44 180 backscatter profiles and 64 764 radio occultation profiles. The modular structure of the archive allows an easy collocation of the datasets according to the users' needs, and the cross-comparison of the datasets shows different consistency of the parameters estimated with different sensors and algorithms, according to the sensitivity and resolution of the instruments. The data described here are published with a DOI at https://doi.org/10.5880/fidgeo.2020.016 (Tournigand et al., 2020a).


2020 ◽  
Author(s):  
Pierre Bosser ◽  
Olivier Bock ◽  
Cyrille Flamant ◽  
Sandrine Bony ◽  
Sabrina Speich

Abstract. In the framework of the EUREC4A (Elucidating the role of clouds-circulation coupling in climate) campaign that took place in January and February 2020, integrated water vapour (IWV) contents were retrieved over the open Tropical Atlantic Ocean using Global Navigation Satellite Systems (GNSS) data acquired from three research vessels (R/Vs): R/V Atalante, R/V Maria S. Merian, and R/V Meteor. This paper describes the GNSS processing method and compares the GNSS IWV retrievals with IWV estimates from the European Center for Medium-range Weather Forecast (ECMWF) fifth ReAnalysis (ERA5), from the Moderate-Resolution Imaging Spectroradiometer (MODIS) infra-red products, and from terrestrial GNSS stations located along the tracks of the ships. The ship-borne GNSS IWVs retrievals from R/V Atalante and R/V Meteor compare well with ERA5, with small biases (−1.62 kg m−2 for R/V Atalante and +0.65 kg m−2 for R/V Meteor) and a root mean square (RMS) difference about 2.3 kg m−2. The results for the R/V Maria S. Merian are found to be of poorer quality, with RMS difference of 6 kg m−2 which are very likely due to the location of the GNSS antenna on this R/V prone to multipath effects. The comparisons with ground-based GNSS data confirm these results. The comparisons of all three R/V IWV retrievals with MODIS infra-red product show large RMS differences of 5–7 kg m−2, reflecting the enhanced uncertainties of this satellite product in the tropics. These ship-borne IWV retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign, east of Barbados, Guyana and northern Brazil. Both the raw GNSS measurements and the IWV estimates are available through the AERIS data center (https://en.aeris-data.fr/). The digital object identifiers (DOIs) for R/V Atalante IWV and raw datasets are https://doi.org/10.25326/71 (Bosser et al., 2020a) and https://doi.org/10.25326/74 (Bosser et al., 2020d), respectively. The DOIs for the R/V Maria S. Merian IWV and raw datasets are https://doi.org/10.25326/72 (Bosser et al., 2020b) and https://doi.org/10.25326/75 (Bosser et al., 2020e), respectively. The DOIs for the R/V Meteor IWV and raw datasets are https://doi.org/10.25326/73 (Bosser et al., 2020c) and https://doi.org/10.25326/76 (Bosser et al., 2020f), respectively.


2021 ◽  
Author(s):  
Karina Wilgan ◽  
Galina Dick ◽  
Florian Zus ◽  
Jens Wickert

Abstract. The assimilation of Global Navigation Satellite Systems (GNSS) data has been proven to have a positive impact on the weather forecasts. However, the impact is limited due to the fact that solely the Zenith Total Delays (ZTD) or Integrated Water Vapor (IWV) derived from the GPS satellite constellation are utilized. Assimilation of more advanced products, such as Slant Total Delays (STDs) from more satellite systems may lead to improved forecasts. This study shows a preparation step for the assimilation, i.e. the analysis of the multi-GNSS tropospheric advanced parameters: ZTDs, tropospheric gradients and STDs. Three solutions are taken into consideration: GPS-only, GPS/GLONASS (GR) and GPS/GLONASS/Galileo (GRE). The parameters are compared with two global Numerical Weather Models (NWM): European Centre for Medium Weather Forecast (ECMWF) ERA5 reanalysis and a forecast model ICON run by the German Weather Service. The results show that for ZTDs and horizontal gradients, all three GNSS solutions show similar level of agreement with the NWM data. For ZTDs, the agreement is better for the ERA5 model with biases of approx. 1.5 mm and standard deviations (SDs) of 7.7 mm than for ICON with biases of 3.2 mm and SDs of 10 mm. For tropospheric gradients, the agreement with both NWMs is very similar: the biases are negligible and SDs equal to approx. 0.4 mm. For the STDs, the GPS-only solution has an average bias w.r.t. ERA5 of 4.2 mm with SDs of 25.2 mm. The statistics are very slightly reduced for the GRE solution and further reduced to a bias of 3.5 mm with SDs of 24.5 mm for the Galileo-only observations. This study shows that all systems are of comparable quality. However, the advantage of combining more GNSS systems in the operational data assimilation is the geometry improvement by adding more observations, especially for low elevation angles.


Author(s):  
M. O. Ehigiator

Geophysical investigation was conducted at Okada community in ovia North Local Govertment area of Edo state to determine the prospect of aquifer zone. The Petrozenith PZ-02 Terrameter, one of the Electrical Resistivity Equipment was used to conduct a Vertical Electrical Sounding (VES) in the study area. The Garmin Etrex 10 Global Navigation satellite systems (GNSS) was used to acquire Geodetic coordinates of point where VES observations were made. This research was carried out as a pre-drilling Hydro-geophysical survey conducted for the purpose of surveying and studying the proposed water borehole site at Okada Community that has suffered acute water problems for a very long time. There have been series of boreholes drilled in the studied area but all are dry wells. This survey was conducted to investigate the subsurface complexity of the sites in respect of lithology and to recommend the total drill depth based on the prospective aquifer unit so identified. Result of interpretation suggests that the area is underlain with substantive aquiferous formation but at a depth not exceeding 121.60 m (398.95 ft), which is the lower aquifer unit. The value of elevation at point of observation referenced to mean sea level is 94 m.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Gilgien ◽  
Philip Crivelli ◽  
Josef Kröll ◽  
Live S. Luteberget ◽  
Erich Müller ◽  
...  

AbstractIn Super-G alpine ski racing mean speed is nearly as high as in Downhill. Hence, the energy dissipated in typical impact accidents is similar. However, unlike Downhill, on Super-G courses no training runs are performed. Accordingly, speed control through course design is a challenging but important task to ensure safety in Super-G. In four male World Cup alpine Super-G races, terrain shape, course setting and the mechanics of a high-level athlete skiing the course were measured with differential global navigation satellite systems (dGNSS). The effects of course setting on skier mechanics were analysed using a linear mixed effects model. To reduce speed by 0.5 m/s throughout a turn, the gate offset needs to be increased by + 51%. This change simultaneously leads to a decrease in minimal turn radius (− 19%), an increase in impulse (+ 27%) and an increase in maximal ground reaction force (+ 6%). In contrast, the same reduction in speed can also be achieved by a − 13% change in vertical gate distance, which also leads to a small reduction in minimal turn radius (− 4%) impulse (− 2%), and no change in maximal ground reaction force; i.e. fewer adverse side effects in terms of safety. It appears that shortening the vertical gate distance is a better and safer way to reduce speed in Super-G than increasing the gate offset.


Sign in / Sign up

Export Citation Format

Share Document