land uplift
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 435
Author(s):  
Nebiyu Girgibo ◽  
Anne Mäkiranta ◽  
Xiaoshu Lü ◽  
Erkki Hiltunen

Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime.


Author(s):  
A.L. Parker ◽  
J.-P. Pigois ◽  
M.S. Filmer ◽  
W.E. Featherstone ◽  
N.E. Timms ◽  
...  

Author(s):  
L. C. Mabaquiao

Abstract. The city of Metro Manila has been constantly battered by several hazards on an annual basis. On January 2020, the Taal Volcano erupted with multiple recorded earthquakes. Previous literatures have found that Metro Manila is experiencing a steady subsidence. Determination of land uplift or subsidence is crucial in planning and mitigating the effects of flooding in the area. The study aims to determine whether an uplift occurred in Metro Manila after the eruption or is the study area still experiencing subsidence This study uses a pair L1 SLC Sentinel 1 Images. Radar Interferometry is used to generate Interferograms and Satellite Line of Sight (LOS) deformation was determined between the 2 dates of image acquisition. It was found that the Metro Manila area generally experienced an uplift except for some areas in Caloocan which shows subsidence. The uplift magnitude gradually decreases going from the South to North with a max value of 9.6 cm.


Ecosystems ◽  
2021 ◽  
Author(s):  
Heli Juottonen ◽  
Mirkka Kieman ◽  
Hannu Fritze ◽  
Leena Hamberg ◽  
Anna M. Laine ◽  
...  

AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen–bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.


2021 ◽  
Author(s):  
Ansis Blaus ◽  
Triin Reitalu ◽  
Anneli Poska ◽  
Jüri Vassiljev ◽  
Siim Veski

2021 ◽  
Vol 8 ◽  
Author(s):  
Jian Su ◽  
Elin Andrée ◽  
Jacob W. Nielsen ◽  
Steffen M. Olsen ◽  
Kristine S. Madsen

Denmark has a long, complex coastline, connecting the North Sea in the west to the semi-enclosed Baltic Sea in the east, via the Skagerrak-Kattegat Seas. Historical sea level records indicate that relative sea level (RSL) has been increasing along the Danish North Sea coast, south of Skagerrak, following the global mean sea level (GMSL) rise. In the central Skagerrak-Kattegat Seas, RSL rise has been practically absent, due to the GMSL rise being off-set by the Fennoscandian post-glacial land-uplift. The new IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) reported that under RCP8.5 GMSL will increase more than the previous estimates in the IPCC Fifth Assessment Report (AR5) at the end of twenty-first century due to Antarctic ice sheet dynamics. We performed a regionalization of the SROCC sea level projections for the “Danish Climate Atlas” dataset, a nation-wide climate adaptation dataset based on IPCC and various national and international databases. In these complementary datasets, important local data have been considered, which have not been included in the IPCC SROCC GMSL rise estimates, i.e., more precise national-wide land-rise prediction and sets of sea level fingerprints. Our results indicate that sea level projections under RCP8.5 results in a > 40 cm RSL rise at the end of the twenty-first century in the Skagerrak-Kattegat Seas, which might call for a new adaptation strategy in this region. The rate of mean sea level rise will exceed the rate of the land-rise earlier than the previous estimates by AR5 under the RCP8.5 scenario. In particular, we stress how these new estimates will affect future extreme sea levels in this region. Based on our results, we suggest this more recent GMSL projection needs to be considered in coastal risk assessments in the Skagerrak-Kattegat Seas also in this century.


2021 ◽  
Author(s):  
Artur Guzy ◽  
Wojciech Witkowski ◽  
Ryszard Hejmanowski ◽  
Agnieszka Malinowska

<p>The objective of the research was to investigate the process of rock mass recompaction related to groundwater rebound induced by underground mining. Research has been conducted in the area of the closed copper ore mine (Konrad) as well as the anhydrite and gypsum mine (Lubichów) in south-eastern Poland.</p><p>The mining operation was carried out in the years 1944-2001 in the area of the Konrad mine and 1944-2015 in the area of the Lubichów mine. It resulted in substantial land subsidence of up to 1.4 m and drainage of the aquifer system. However, it is estimated that the subsidence caused by groundwater pumping during these periods was 0.3 m in total. Furthermore, the spatial extent of the depression cone in the aquifer system immediately after the cessation of exploitation significantly exceeded the limits of the mining areas. Following the closure of the mine, a continuous increase in the groundwater head and land uplift is observed.</p><p>Classical survey results and the Persistent Scatter Satellite Radar Interferometry (PSInSAR) method were used to determine land surface movements in the period from November 2015 to November 2020. The results of the research show in the area of the Lubichów mine closed in June 2015, vertical land uplift reached a maximum of approx. 92 mm in that period. At the same time, in the Konrad mine area, closed in March 2001, no significant land uplift was observed. However, the main part of the investigation concerned the development of a novel method of land uplifting prediction. As a result, an attempt was made to comparatively analyze the dynamics of land uplift associated with the life cycle of the mine and the increase in the groundwater head.</p><p>These analyzes allowed the time factor for the modelling of the land uplift to be determined. This time factor is approx. 5 months in the area of the Lubichów mine and indicates that there is a time lag between the start of the groundwater head increase and the land uplift occurrence. Also, the investigation revealed that land uplift will occur in the analyzed area for the next five years. However, the dynamics of such movements will gradually decline in the years to come.</p><p>The methodology developed could be applied to any post-mining area where groundwater rebound-related uplifts are observed. It may be an appropriate tool for estimating both the time during which the land uplift is expected to begin after the mine drainage has been stopped, as well as the total duration of the land uplift phenomena.</p>


2021 ◽  
Author(s):  
Patrick Wu ◽  
Tanghua Li ◽  
Holger Steffen

<p>Glacial Isostatic Adjustment (GIA) induced by the melting of the Pleistocene Ice Sheets causes differential land uplift, relative sea level and geoid changes. Thus, GIA in North America may affect water flow-accumulation and the rate of sedimentation and erosion in the South Saskatchewan River Basin (SSRB), but so far this has not been well investigated.</p><p> </p><p>Our aim here is to use surface topography in the SSRB and simple models of surface water flow to compute flow-accumulation, wetness index, stream power index and sediment transport index - the latter two affect the rates of erosion and sedimentation. Since the river basin became virtually ice-free around 8 ka BP, we shall study the effects of GIA induced differential land uplift during the last 8 ka on these indexes.</p><p> </p><p>Using the present-day surface topography ETOPO1 model, we see that the stream power index and sediment transport index in the SSRB may not be high enough to alter the surface topography significantly today and probably during the last 8 ka except for places around the Rocky Mountains. The effect of using 1 and 3 arc minute grid resolution of the ETOPO1 model does not significantly alter the value of these indexes. However, we note that using 1 arc minute grid is much more computationally intensive, so only a smaller area of the SSRB can be included in the computation.</p><p> </p><p>Next, we assume that sedimentation and erosion did not occur in the SSRB during the last 8 ka BP, and the change in surface topography is only due to GIA induced differential uplift. We use land uplift predicted by a large number of GIA models to study the changes in stream power & sediment transport indexes in the last 8 ka BP. Our base GIA model is ICE6G_C(VM5a). Then we investigate the effects of using uplift predicted by other GIA models that can still fit the observed relative sea level (RSL), uplift rate and gravity-rate-of-change data in North America reasonably well. These alternate GIA models have lateral heterogeneity in the mantle and lithosphere included – in particular we test those that give the largest differential uplift in the SSRB. We found that the effect of these other GIA earth models is not large on the stream power & sediment transport indexes. Finally, we investigate the sensitivity of these indexes on the ice models that are consistent with GIA observations. The results of this study will be useful to our understanding of water flow accumulation, sedimentation and erosion in the past, present and future and for water resource management in North America.</p>


2021 ◽  
Author(s):  
Anna M. Laine ◽  
Tapio Lindholm ◽  
Mats Nilsson ◽  
Oleg Kutznetsov ◽  
Vincent E. J. Jassey ◽  
...  

2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


Sign in / Sign up

Export Citation Format

Share Document