Hydrogeophysical Survey of Groundwater Development at Okada Community Ovia North – East L.G.A. Edo State

Author(s):  
M. O. Ehigiator

Geophysical investigation was conducted at Okada community in ovia North Local Govertment area of Edo state to determine the prospect of aquifer zone. The Petrozenith PZ-02 Terrameter, one of the Electrical Resistivity Equipment was used to conduct a Vertical Electrical Sounding (VES) in the study area. The Garmin Etrex 10 Global Navigation satellite systems (GNSS) was used to acquire Geodetic coordinates of point where VES observations were made. This research was carried out as a pre-drilling Hydro-geophysical survey conducted for the purpose of surveying and studying the proposed water borehole site at Okada Community that has suffered acute water problems for a very long time. There have been series of boreholes drilled in the studied area but all are dry wells. This survey was conducted to investigate the subsurface complexity of the sites in respect of lithology and to recommend the total drill depth based on the prospective aquifer unit so identified. Result of interpretation suggests that the area is underlain with substantive aquiferous formation but at a depth not exceeding 121.60 m (398.95 ft), which is the lower aquifer unit. The value of elevation at point of observation referenced to mean sea level is 94 m.

2020 ◽  
Author(s):  
Kelly Brunt ◽  
Robert Hawley

<p>The Greenland Geodetic Network (GNET) consists of 58 global navigation satellite systems (GNSS) installed on the bedrock around the perimeter of the island. Much of the network was installed between 2007 and 2009, providing a long time series of GNSS data for much of Greenland. The network is currently owned and maintained by the Danish Agency for Data Supply and Efficiency (SDFE), while the National Science Foundation (NSF) provides support for data transport from the deep field. Here, we present a new resource (go-gnet.org) intended to be a clearinghouse to foster international collaborations and to encourage new and innovative use of these data.</p>


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Gilgien ◽  
Philip Crivelli ◽  
Josef Kröll ◽  
Live S. Luteberget ◽  
Erich Müller ◽  
...  

AbstractIn Super-G alpine ski racing mean speed is nearly as high as in Downhill. Hence, the energy dissipated in typical impact accidents is similar. However, unlike Downhill, on Super-G courses no training runs are performed. Accordingly, speed control through course design is a challenging but important task to ensure safety in Super-G. In four male World Cup alpine Super-G races, terrain shape, course setting and the mechanics of a high-level athlete skiing the course were measured with differential global navigation satellite systems (dGNSS). The effects of course setting on skier mechanics were analysed using a linear mixed effects model. To reduce speed by 0.5 m/s throughout a turn, the gate offset needs to be increased by + 51%. This change simultaneously leads to a decrease in minimal turn radius (− 19%), an increase in impulse (+ 27%) and an increase in maximal ground reaction force (+ 6%). In contrast, the same reduction in speed can also be achieved by a − 13% change in vertical gate distance, which also leads to a small reduction in minimal turn radius (− 4%) impulse (− 2%), and no change in maximal ground reaction force; i.e. fewer adverse side effects in terms of safety. It appears that shortening the vertical gate distance is a better and safer way to reduce speed in Super-G than increasing the gate offset.


2021 ◽  
Vol 13 (4) ◽  
pp. 638
Author(s):  
Nikolay Shestakov ◽  
Alexander Orlyakovskiy ◽  
Natalia Perevalova ◽  
Nikolay Titkov ◽  
Danila Chebrov ◽  
...  

Global Navigation Satellite Systems have been extensively used to investigate the ionosphere response to various natural and man-made phenomena for the last three decades. However, ionospheric reaction to volcano eruptions is still insufficiently studied and understood. In this work we analyzed the ionospheric response to the 11–16 June 2009 VEI class 4 Sarychev Peak volcano eruption by using surrounding Russian and Japanese GPS networks. Prominent covolcanictotal electron content (TEC)ionospheric disturbances (CVIDs) with amplitudes and periods ranged between 0.03–0.15 TECU and 2.5–4.5 min were discovered for the three eruptive events occurred at 18:51 UT, 14 June; at 01:15 and 09:18 UT, 15 June 2009. The estimates of apparent CVIDs velocities vary within 700–1000 m/s in the far-field zone (300–900 km to the southwest from the volcano) and 1300–1800 m/s in close proximity toSarychev Peak. The characteristics of the observed TEC variations allow us to attribute them to acoustic mode. The south-southwestward direction is preferred for CVIDs propagation. We concluded that the ionospheric response to a volcano eruption is mainly determined by a ratio between explosion strength and background ionization level. Some evidence of secondary (F2-layer) CVIDs’ source eccentric location were obtained.


2021 ◽  
Vol 11 (13) ◽  
pp. 6079
Author(s):  
Abulasad Elgamoudi ◽  
Hamza Benzerrouk ◽  
G. Arul Elango ◽  
René Landry

A single Radio-Frequency Interference (RFI) is a disturbance source of modern wireless systems depending on Global Navigation Satellite Systems (GNSS) and Satellite Communication (SatCom). In particular, significant applications such as aeronautics and satellite communication can be severely affected by intentional and unintentional interference, which are unmitigated. The matter requires finding a radical and effective solution to overcome this problem. The methods used for overcoming the RFI include interference detection, interference classification, interference geolocation, tracking and interference mitigation. RFI source geolocation and tracking methodology gained universal attention from numerous researchers, specialists, and scientists. In the last decade, various conventional techniques and algorithms have been adopted in geolocation and target tracking in civil and military operations. Previous conventional techniques did not address the challenges and demand for novel algorithms. Hence there is a necessity for focussing on the issues associated with this. This survey introduces a review of various conventional geolocation techniques, current orientations, and state-of-the-art techniques and highlights some approaches and algorithms employed in wireless and satellite systems for geolocation and target tracking that may be extremely beneficial. In addition, a comparison between different conventional geolocation techniques has been revealed, and the comparisons between various approaches and algorithms of geolocation and target tracking have been addressed, including H∞ and Kalman Filtering versions that have been implemented and investigated by authors.


2019 ◽  
Vol 11 (3) ◽  
pp. 228 ◽  
Author(s):  
Xingxing Li ◽  
Hongbo Lv ◽  
Fujian Ma ◽  
Xin Li ◽  
Jinghui Liu ◽  
...  

It is widely known that in real-time kinematic (RTK) solution, the convergence and ambiguity-fixed speeds are critical requirements to achieve centimeter-level positioning, especially in medium-to-long baselines. Recently, the current status of the global navigation satellite systems (GNSS) can be improved by employing low earth orbit (LEO) satellites. In this study, an initial assessment is applied for LEO constellations augmented GNSS RTK positioning, where four designed LEO constellations with different satellite numbers, as well as the nominal GPS constellation, are simulated and adopted for analysis. In terms of aforementioned constellations solutions, the statistical results of a 68.7-km baseline show that when introducing 60, 96, 192, and 288 polar-orbiting LEO constellations, the RTK convergence time can be shortened from 4.94 to 2.73, 1.47, 0.92, and 0.73 min, respectively. In addition, the average time to first fix (TTFF) can be decreased from 7.28 to 3.33, 2.38, 1.22, and 0.87 min, respectively. Meanwhile, further improvements could be satisfied in several elements such as corresponding fixing ratio, number of visible satellites, position dilution of precision (PDOP) and baseline solution precision. Furthermore, the performance of the combined GPS/LEO RTK is evaluated over various-length baselines, based on convergence time and TTFF. The research findings show that the medium-to-long baseline schemes confirm that LEO satellites do helpfully obtain faster convergence and fixing, especially in the case of long baselines, using large LEO constellations, subsequently, the average TTFF for long baselines has a substantial shortened about 90%, in other words from 12 to 2 min approximately by combining with the larger LEO constellation of 192 or 288 satellites. It is interesting to denote that similar improvements can be observed from the convergence time.


Sign in / Sign up

Export Citation Format

Share Document