postglacial rebound
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 4)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Author(s):  
S Mazzotti ◽  
John Townend

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S HS ) with that determined from boreholes (S HB ) exhibit a bimodal pattern: In four zones, the S HS and regional S HB orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S HS azimuth shows a statistically significant 30°-50° clockwise rotation relative to the regional S HB azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S HS orientations strictly parallel and strongly oblique, respectively, to the regional S HB trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S HB /S HS rotations occur over 20-100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general. © 2010 Geological Society of America.


2021 ◽  
Author(s):  
S Mazzotti ◽  
John Townend

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S HS ) with that determined from boreholes (S HB ) exhibit a bimodal pattern: In four zones, the S HS and regional S HB orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S HS azimuth shows a statistically significant 30°-50° clockwise rotation relative to the regional S HB azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S HS orientations strictly parallel and strongly oblique, respectively, to the regional S HB trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S HB /S HS rotations occur over 20-100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general. © 2010 Geological Society of America.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
P. Häkli ◽  
M. Lidberg ◽  
L. Jivall ◽  
T. Nørbech ◽  
O. Tangen ◽  
...  

AbstractThe NKG 2008 GPS campaign was carried out in September 28 – October 4, 2008. The purpose was to establish a common reference frame in the Nordic- Baltic-Arctic region, and to improve and update the transformations from the latest global ITRF reference frame to the national ETRS89 realizations of the Nordic/Baltic countries. Postglacial rebound in the Fennoscandian area causes intraplate deformations up to about 10 mm/yr to the Eurasian tectonic plate which need to be taken into account in order to reach centimetre level accuracies in the transformations. We discuss some possible alternatives and present the most applicable transformation strategy. The selected transformation utilizes the de facto transformation recommended by the EUREF but includes additional intraplate corrections and a new common Nordic-Baltic reference frame to serve the requirements of the Nordic/Baltic countries. To correct for the intraplate deformations in the Nordic-Baltic areawe have used the commonNordic deformation model NKG RF03vel. The new common reference frame, NKG ETRF00, was aligned to ETRF2000 at epoch 2000.0 in order to be close to the national ETRS89 realizations and to coincide with the land uplift epoch of the national height systems. We present here the realization of the NKG ETRF00 and transformation formulae together with the parameters to transform from global ITRF coordinates to Nordic/Baltic realizations of the ETRS89.


Baltica ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Alar Rosentau ◽  
Jan Harff ◽  
Michael Meyer ◽  
Tõnis Oja

2012 ◽  
Vol 2 (4) ◽  
pp. 281-289 ◽  
Author(s):  
E. Rangelova ◽  
W. Van Der Wal ◽  
M.G. Sideris

AbstractOne of the main current geodetic activities in North America is the definition and establishment of a geoid-based vertical datum that will replace the official CGVD28 and NAVD88 datums in Canada and the USA, respectively. The new datum will also have a time-dependent (dynamic) component required by the targeted one-centimetre accuracy of the datum. Heights of the levelling benchmarks are subject to temporal changes, which contribute to the degradation of the accuracy of the datum and increase the misfit of the geoid heights determined gravimetrically and by GNSS/levelling. The zero level surface, i.e., the geoid, also changes with time, most significantly due to postglacial rebound, climate-induced loss of polar ice masses and mountain glaciers, and hydrology variations. In this study, we examine the possible changes of the datum due to the aforementioned factors. We are mostly concerned with postglacial rebound as it can contribute more than 1 mm per year and more than 1 cm per decade to the geoid change. We also assess the significance of the temporal geoid and benchmark height changes and show that, compared to its current accuracy, the geoid change is only significant after a decade mostly in the flat areas of central Canada.


Sign in / Sign up

Export Citation Format

Share Document