scholarly journals Measurements from mobile surface vehicles during LAPSE-RATE

Author(s):  
Gijs de Boer ◽  
Sean Waugh ◽  
Alexander Erwin ◽  
Steven Borenstein ◽  
Cory Dixon ◽  
...  

Abstract. Between 14 and 20 July 2018, small unmanned aircraft systems (sUAS) were deployed to the San Luis Valley of Colorado (USA) alongside surface-based remote, in-situ sensors, and radiosonde systems as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). The measurements collected as part of LAPSE-RATE targeted quantities related to enhancing our understanding of boundary layer structure, cloud and aerosol properties and surface-atmosphere exchange, and provide detailed information to support model evaluation and improvement work. Additionally, intensive intercomparison between the different unmanned aircraft platforms was completed. The current manuscript describes the observations obtained using three different types of surface-based mobile observing vehicles. These included the University of Colorado Mobile UAS Research Collaboratory (MURC), the National Oceanic and Atmospheric Administration National Severe Storms Laboratory Mobile Mesonet, and two University of Nebraska Combined Mesonet and Tracker (CoMeT) vehicles. Over the one-week campaign, a total of 143 hours of data were collected using this combination of vehicles. The data from these coordinated activities provide detailed perspectives on the spatial variability of atmospheric state parameters (air temperature, humidity, pressure, and wind) throughout the northern half of the San Luis Valley. These data sets have been checked for quality and published to the Zenodo data archive under a specific community set up for LAPSE-RATE (https://zenodo.org/communities/lapse-rate/) and are accessible at no cost by all registered users. The primary dataset DOIs are https://doi.org/10.5281/zenodo.3814765 (CU MURC measurements; de Boer et al., 2020d), https://doi.org/10.5281/zenodo.3738175 (NSSL MM measurements; Waugh, 2020) and https://doi.org/10.5281/zenodo.3838724 (UNL CoMeT measurements; Houston and Erwin., 2020).

2021 ◽  
Vol 13 (1) ◽  
pp. 155-169
Author(s):  
Gijs de Boer ◽  
Sean Waugh ◽  
Alexander Erwin ◽  
Steven Borenstein ◽  
Cory Dixon ◽  
...  

Abstract. Between 14 and 20 July 2018, small unmanned aircraft systems (UASs) were deployed to the San Luis Valley of Colorado (USA) alongside surface-based remote sensors, in situ sensors, and radiosonde systems as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). The measurements collected as part of LAPSE-RATE targeted quantities related to enhancing our understanding of boundary layer structure, cloud and aerosol properties and surface–atmosphere exchange and provide detailed information to support model evaluation and improvement work. Additionally, intensive intercomparison between the different unmanned aircraft platforms was completed. The current paper describes the observations obtained using three different types of surface-based mobile observing vehicles. These included the University of Colorado Mobile UAS Research Collaboratory (MURC), the National Oceanic and Atmospheric Administration National Severe Storms Laboratory Mobile Mesonet, and two University of Nebraska Combined Mesonet and Tracker (CoMeT) vehicles. Over the 1-week campaign, a total of 143 h of data were collected using this combination of vehicles. The data from these coordinated activities provide detailed perspectives on the spatial variability of atmospheric state parameters (air temperature, humidity, pressure, and wind) throughout the northern half of the San Luis Valley. These datasets have been checked for quality and published to the Zenodo data archive under a specific “community” setup for LAPSE-RATE (https://zenodo.org/communities/lapse-rate/, last access: 21 January 2021) and are accessible at no cost by all registered users. The primary dataset DOIs are https://doi.org/10.5281/zenodo.3814765 (CU MURC measurements; de Boer et al., 2020d), https://doi.org/10.5281/zenodo.3738175 (NSSL MM measurements; Waugh, 2020), and https://doi.org/10.5281/zenodo.3838724 (UNL CoMeT measurements; Houston and Erwin, 2020).


2021 ◽  
Vol 13 (6) ◽  
pp. 2515-2528
Author(s):  
Gijs de Boer ◽  
Cory Dixon ◽  
Steven Borenstein ◽  
Dale A. Lawrence ◽  
Jack Elston ◽  
...  

Abstract. Between 14 and 20 July 2018, small remotely piloted aircraft systems (RPASs) were deployed to the San Luis Valley of Colorado (USA) together with a variety of surface-based remote and in situ sensors as well as radiosonde systems as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). The observations from LAPSE-RATE were aimed at improving our understanding of boundary layer structure, cloud and aerosol properties, and surface–atmosphere exchange and provide detailed information to support model evaluation and improvement work. The current paper describes the observations obtained using four different types of RPASs deployed by the University of Colorado Boulder and Black Swift Technologies. These included the DataHawk2, the Talon and the TTwistor (University of Colorado), and the S1 (Black Swift Technologies). Together, these aircraft collected over 30 h of data throughout the northern half of the San Luis Valley, sampling altitudes between the surface and 914 m a.g.l. Data from these platforms are publicly available through the Zenodo archive and are co-located with other LAPSE-RATE data as part of the Zenodo LAPSE-RATE community (https://zenodo.org/communities/lapse-rate/, last access: 27 May 2021). The primary DOIs for these datasets are https://doi.org/10.5281/zenodo.3891620 (DataHawk2, de Boer et al., 2020a, e), https://doi.org/10.5281/zenodo.4096451 (Talon, de Boer et al., 2020d), https://doi.org/10.5281/zenodo.4110626 (TTwistor, de Boer et al., 2020b), and https://doi.org/10.5281/zenodo.3861831 (S1, Elston and Stachura, 2020).


2020 ◽  
Author(s):  
Gijs de Boer ◽  
Cory Dixon ◽  
Steven Borenstein ◽  
Dale A. Lawrence ◽  
Jack Elston ◽  
...  

Abstract. Between 14 and 20 July 2018, small remotely-piloted aircraft systems (RPAS) were deployed to the San Luis Valley of Colorado (USA) together with a variety of surface-based remote and in-situ sensors, and radiosonde systems as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). The observations from LAPSE-RATE were aimed at improving our understanding of boundary layer structure, cloud and aerosol properties and surface-atmosphere exchange, and provide detailed information to support model evaluation and improvement work. The current manuscript describes the observations obtained using four different types of RPAS deployed by the University of Colorado Boulder and Black Swift Technologies. These included the DataHawk2, the Talon and the TTwistor (U. of Colorado) and the S1 (Black Swift Technologies). Together, these aircraft collected over 30 hours of data throughout the northern half of the San Luis Valley, sampling altitudes between the surface and 914 m AGL. Data from these platforms are publicly available through the Zenodo archive, and are co-located with other LAPSE-RATE data as part of the Zenodo LAPSE-RATE community (https://zenodo.org/communities/lapse-rate/). The primary DOIs for these datasets are https://doi.org/10.5281/zenodo.3891620 (DataHawk2, de Boer et al., 2020a), https://doi.org/10.5281/zenodo.4096451 (Talon, de Boer et al., 2020b), https://doi.org/10.5281/zenodo.4110626 (TTWISTOR, de Boer et al., 2020c), and https://doi.org/10.5281/zenodo.3861831 (S1, Elston and Stachura, 2020).


2020 ◽  
Vol 101 (5) ◽  
pp. E684-E699 ◽  
Author(s):  
Gijs de Boer ◽  
Constantin Diehl ◽  
Jamey Jacob ◽  
Adam Houston ◽  
Suzanne W. Smith ◽  
...  

ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.


2020 ◽  
Author(s):  
Gijs de Boer ◽  
Adam Houston ◽  
Jamey Jacob ◽  
Phillip B. Chilson ◽  
Suzanne W. Smith ◽  
...  

Abstract. Unmanned aircraft systems (UAS) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14–20 July 2018 the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE, de Boer et al., 2020a). This field campaign spanned a one-week deployment to Colorado’s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/).


2020 ◽  
Vol 12 (4) ◽  
pp. 3357-3366
Author(s):  
Gijs de Boer ◽  
Adam Houston ◽  
Jamey Jacob ◽  
Phillip B. Chilson ◽  
Suzanne W. Smith ◽  
...  

Abstract. Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020).


2021 ◽  
Vol 13 (2) ◽  
pp. 269-280
Author(s):  
Elizabeth A. Pillar-Little ◽  
Brian R. Greene ◽  
Francesca M. Lappin ◽  
Tyler M. Bell ◽  
Antonio R. Segales ◽  
...  

Abstract. In July 2018, the University of Oklahoma deployed three CopterSonde remotely piloted aircraft systems (RPASs) to take measurements of the evolving thermodynamic and kinematic state of the atmospheric boundary layer (ABL) over complex terrain in the San Luis Valley, Colorado. A total of 180 flights were completed over 5 d, with teams operating simultaneously at two different sites in the northern half of the valley. A total of 2 d of operations focused on convection initiation studies, 1 d focused on ABL diurnal transition studies, 1 d focused on internal comparison flights, and the last day of operations focused on cold air drainage flows. The data from these coordinated flights provide insight into the horizontal heterogeneity of the atmospheric state over complex terrain. This dataset, along with others collected by other universities and institutions as a part of the LAPSE-RATE campaign, have been submitted to Zenodo (Greene et al., 2020) for free and open access (https://doi.org/10.5281/zenodo.3737087).


2020 ◽  
Author(s):  
Elizabeth A. Pillar-Little ◽  
Brian R. Greene ◽  
Francesca M. Lappin ◽  
Tyler M. Bell ◽  
Antonio R. Segales ◽  
...  

Abstract. In July 2018, the University of Oklahoma deployed three CopterSonde 2 remotely piloted aircraft systems (RPAS) to take measurements of the evolving thermodynamic and kinematic state of the atmospheric boundary layer (ABL) over complex terrain in the San Luis Valley, Colorado. A total of 180 flights were completed over five days, with teams operating simultaneously at two different sites in the northern half of the valley. Two days of operations focused on convection initiation studies, one day focused on ABL diurnal transition studies, one day focused on internal comparison flights, and the last day of operations focused on cold air drainage flows. The data from these coordinated flights provides insight into the horizontal heterogeneity of the atmospheric state over complex terrain as well as the expected horizontal footprint of RPAS profiles. This dataset, along with others collected by other universities and institutions as a part of the LAPSE-RATE campaign, have been submitted to Zenodo (Greene et al., 2020) for free and open access (https://doi.org/10.5281/zenodo.3737087).


2020 ◽  
Author(s):  
Tyler M. Bell ◽  
Petra M. Klein ◽  
Julie K. Lundquist ◽  
Sean Waugh

Abstract. In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to showcase the role remotely-piloted aircraft systems (RPAS) can have in filling the atmospheric data gap.This campaign was dubbed Lower Atmospheric Process Studies at Elevation – A Remotely-piloted Aircraft Team Experiment(LAPSE-RATE). In support of this campaign, ground-based remote and in-situ systems were also deployed for the campaign.The University of Oklahoma deployed the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS), the University of Colorado deployed two Doppler wind lidars, and the National Severe Storms Lab deployed a Mobile Mesonet with the ability to launch radiosondes. This paper focuses on the data products from these instruments that result in pro-files of the atmospheric state. The data are publicly available in the Zenodo LAPSE-RATE community portal (https://zenodo.org/communities/lapse-rate/). The profile data discussed are available at https://doi.org/10.5281/zenodo.3780623 (Bell and Klein, 2020), https://doi.org/10.5281/zenodo.3780593 (Bell et al., 2020b), https://doi.org/10.5281/zenodo.3727224 (Bell et al., 2020a), https://doi.org/10.5281/zenodo.3738175 (Waugh, 2020b), https://doi.org/10.5281/zenodo.3720444 (Waugh, 2020a),and https://doi.org/10.5281/zenodo.3698228 (Lundquist et al., 2020).


2021 ◽  
Vol 13 (7) ◽  
pp. 3539-3549
Author(s):  
Miguel Sanchez Gomez ◽  
Julie K. Lundquist ◽  
Petra M. Klein ◽  
Tyler M. Bell

Abstract. The International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week in July 2018 to demonstrate unmanned aircraft systems' (UASs) capabilities in sampling the atmospheric boundary layer. This week-long experiment was called the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. Numerous remotely piloted aircraft and ground-based instruments were deployed with the objective of capturing meso- and microscale phenomena in the atmospheric boundary layer. The University of Oklahoma deployed one Halo Streamline lidar, and the University of Colorado Boulder deployed two WindCube lidars. In this paper, we use data collected from these Doppler lidars to estimate turbulence dissipation rate throughout the campaign. We observe large temporal variability of turbulence dissipation close to the surface with the WindCube lidars that is not detected by the Halo Streamline. However, the Halo lidar enables estimating dissipation rate within the whole boundary layer, where a diurnal variability emerges. We also find a higher correspondence in turbulence dissipation between the WindCube lidars, which are not co-located, compared to the Halo and WindCube lidar that are co-located, suggesting a significant influence of measurement volume on the retrieved values of dissipation rate. This dataset has been submitted to Zenodo (Sanchez Gomez and Lundquist, 2020) for free and is openly accessible (https://doi.org/10.5281/zenodo.4399967).


Sign in / Sign up

Export Citation Format

Share Document