scholarly journals Data Generated During the 2018 LAPSE-RATE Campaign: An Introduction and Overview

Author(s):  
Gijs de Boer ◽  
Adam Houston ◽  
Jamey Jacob ◽  
Phillip B. Chilson ◽  
Suzanne W. Smith ◽  
...  

Abstract. Unmanned aircraft systems (UAS) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14–20 July 2018 the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE, de Boer et al., 2020a). This field campaign spanned a one-week deployment to Colorado’s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/).

2020 ◽  
Vol 12 (4) ◽  
pp. 3357-3366
Author(s):  
Gijs de Boer ◽  
Adam Houston ◽  
Jamey Jacob ◽  
Phillip B. Chilson ◽  
Suzanne W. Smith ◽  
...  

Abstract. Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020).


2020 ◽  
Author(s):  
Gijs de Boer ◽  
Sean Waugh ◽  
Alexander Erwin ◽  
Steven Borenstein ◽  
Cory Dixon ◽  
...  

Abstract. Between 14 and 20 July 2018, small unmanned aircraft systems (sUAS) were deployed to the San Luis Valley of Colorado (USA) alongside surface-based remote, in-situ sensors, and radiosonde systems as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). The measurements collected as part of LAPSE-RATE targeted quantities related to enhancing our understanding of boundary layer structure, cloud and aerosol properties and surface-atmosphere exchange, and provide detailed information to support model evaluation and improvement work. Additionally, intensive intercomparison between the different unmanned aircraft platforms was completed. The current manuscript describes the observations obtained using three different types of surface-based mobile observing vehicles. These included the University of Colorado Mobile UAS Research Collaboratory (MURC), the National Oceanic and Atmospheric Administration National Severe Storms Laboratory Mobile Mesonet, and two University of Nebraska Combined Mesonet and Tracker (CoMeT) vehicles. Over the one-week campaign, a total of 143 hours of data were collected using this combination of vehicles. The data from these coordinated activities provide detailed perspectives on the spatial variability of atmospheric state parameters (air temperature, humidity, pressure, and wind) throughout the northern half of the San Luis Valley. These data sets have been checked for quality and published to the Zenodo data archive under a specific community set up for LAPSE-RATE (https://zenodo.org/communities/lapse-rate/) and are accessible at no cost by all registered users. The primary dataset DOIs are https://doi.org/10.5281/zenodo.3814765 (CU MURC measurements; de Boer et al., 2020d), https://doi.org/10.5281/zenodo.3738175 (NSSL MM measurements; Waugh, 2020) and https://doi.org/10.5281/zenodo.3838724 (UNL CoMeT measurements; Houston and Erwin., 2020).


2020 ◽  
Vol 101 (5) ◽  
pp. E684-E699 ◽  
Author(s):  
Gijs de Boer ◽  
Constantin Diehl ◽  
Jamey Jacob ◽  
Adam Houston ◽  
Suzanne W. Smith ◽  
...  

ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2149 ◽  
Author(s):  
Sara Swenson ◽  
Brian Argrow ◽  
Eric Frew ◽  
Steve Borenstein ◽  
Jason Keeler

Supercell thunderstorms can form extremely dangerous and destructive tornadoes. While high fidelity supercell simulations have increased the understanding of supercell mechanics to help determine how and when tornadoes form, there is a lack of targeted, in situ measurements taken aboveground in supercells to validate these simulations. Pseudo-Lagrangian drifters (PLDs) are atmospheric probes that can be used to attain thermodynamic measurements in areas that are difficult or dangerous to access, such as from within supercells. Of particular interest in understanding tornadogenesis is the rear-flank downdraft (RFD). However, strong outflow winds behind the rear-flank gust front (RFGF) make the RFD particularly difficult to access with balloon-borne sensors launched from the ground. A specific type of PLD, an air-launched drifter (ALD) that is released from unmanned aircraft systems (UAS), can be used to access RFD inflows, present at higher altitudes. Results from initial tests of ALDs are shown, along with results from a ground-released PLD test during a supercell intercept in the Oklahoma Panhandle on 12 June 2018. In characterization tests performed at the 2018 International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) flight week, it was found that the ALD sensor system performs reasonably well against industry standards. However, improvements will be made to increase the aspiration of the sensor.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6132
Author(s):  
Hwangnam Kim ◽  
Yong Wun Jung ◽  
Honghai Zhang

In this special issue, we explored swarming, network management, routing for multipath, communications, service applications, detection and identification, computation offloading, and cellular network-based control in time-sensitive networks of unmanned aircraft systems.


Author(s):  
Serge A. Wich ◽  
Lian Pin Koh

In this chapter we discuss the typology of drones that are currently being used for different kinds of environmental and conservation applications. Drones are also commonly known variously as Remotely Piloted Aircraft Systems (RPAS), Unmanned Aerial Vehicles (UAV), and Unmanned Aircraft Systems (UAS). We focus on the most popular aircraft types including multirotor (of various configurations), fixed wing, and hybrid ‘vertical-take-off-and-landing’ (VTOL) craft, and briefly discuss the relative pros and cons of each type. We also broadly discuss the essential components common to all remotely piloted aircraft systems, including the power source, flight controller (or autopilot), and ground control station.


Author(s):  
Des Butler

Privacy has been recognised nationally and internationally as a major challenge posed by the growing proliferation of drones, otherwise known as ‘remotely piloted aircraft’, ‘small unmanned aircraft’ or ‘unmanned aircraft systems’, with surveillance capability. Currently in Australia an uneven landscape of common law causes of action, surveillance statutes and data protection laws provide fragmented protection of privacy. This article compares that legal response with those of the United Kingdom and the United States. It identifies commonalities and differences between those approaches that may be instructive as Australia determines the appropriate response to the potential of invasion of privacy posed by this form of transformative technology.


2018 ◽  
Vol 35 (8) ◽  
pp. 1687-1699 ◽  
Author(s):  
Adam L. Houston ◽  
Jason M. Keeler

AbstractThe objective of the research presented is to assess the impact of sensor response and aircraft airspeed on the accuracy of in situ observations collected by small unmanned aircraft systems profiling the convective boundary layer or transecting airmass boundaries. Estimates are made using simulated aircraft flown within large-eddy simulations. Both instantaneous errors (differences between observed temperature, which include the effects of sensor response and airspeed, and actual temperature) and errors in representation (differences between serial observations and representative snapshots of the atmospheric state) are considered. Synthetic data are retrieved assuming a well-aspirated first-order sensor mounted on rotary-wing aircraft operated as profilers in a simulated CBL and fixed-wing aircraft operated through transects across a simulated airmass boundary. Instantaneous errors are found to scale directly with sensor response time and airspeed for both CBL and airmass boundary experiments. Maximum errors tend to be larger for airmass boundary transects compared to the CBL profiles. Instantaneous errors for rotary-wing aircraft profiles in the CBL simulated for this work are attributable to the background lapse rate and not to turbulent temperature perturbations. For airmass boundary flights, representation accuracy is found to degrade with decreasing airspeed. This signal is most pronounced for flights that encounter the density current wake. When representation errors also include instantaneous errors resulting from sensor response, instantaneous errors are found to be dominant for flights that remain below the turbulent wake. However, for flights that encounter the wake, sensor response times generally need to exceed ~5 s before instantaneous errors become larger than errors in representation.


2020 ◽  
Vol 30 (3) ◽  
pp. 439-455
Author(s):  
Ugo Pagallo ◽  
Eleonora Bassi

Abstract The paper deals with the governance of Unmanned Aircraft Systems (UAS) in European law. Three different kinds of balance have been struck between multiple regulatory systems, in accordance with the sector of the governance of UAS which is taken into account. The first model regards the field of civil aviation law and its European Union (EU)’s regulation: the model looks like a traditional mix of top-down regulation and soft law. The second model concerns the EU general data protection law, the GDPR, which has set up a co-regulatory framework summed up with the principle of accountability also, but not only, in the field of drones. The third model of governance has been adopted by the EU through methods of legal experimentation and coordination mechanisms for UAS. The overall aim of the paper is to elucidate the ways in which such three models interact, insisting on differences and similarities with other technologies (e.g. self-driving cars), and further legal systems (e.g. the US).


2020 ◽  
Author(s):  
Elizabeth A. Pillar-Little ◽  
Brian R. Greene ◽  
Francesca M. Lappin ◽  
Tyler M. Bell ◽  
Antonio R. Segales ◽  
...  

Abstract. In July 2018, the University of Oklahoma deployed three CopterSonde 2 remotely piloted aircraft systems (RPAS) to take measurements of the evolving thermodynamic and kinematic state of the atmospheric boundary layer (ABL) over complex terrain in the San Luis Valley, Colorado. A total of 180 flights were completed over five days, with teams operating simultaneously at two different sites in the northern half of the valley. Two days of operations focused on convection initiation studies, one day focused on ABL diurnal transition studies, one day focused on internal comparison flights, and the last day of operations focused on cold air drainage flows. The data from these coordinated flights provides insight into the horizontal heterogeneity of the atmospheric state over complex terrain as well as the expected horizontal footprint of RPAS profiles. This dataset, along with others collected by other universities and institutions as a part of the LAPSE-RATE campaign, have been submitted to Zenodo (Greene et al., 2020) for free and open access (https://doi.org/10.5281/zenodo.3737087).


Sign in / Sign up

Export Citation Format

Share Document