scholarly journals Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data

2021 ◽  
Vol 9 (4) ◽  
pp. 1013-1044
Author(s):  
Thomas G. Bernard ◽  
Dimitri Lague ◽  
Philippe Steer

Abstract. Efficient and robust landslide mapping and volume estimation is essential to rapidly infer landslide spatial distribution, to quantify the role of triggering events on landscape changes, and to assess direct and secondary landslide-related geomorphic hazards. Many efforts have been made to develop landslide mapping methods, based on 2D satellite or aerial images, and to constrain the empirical volume–area (V–A) relationship which, in turn, would allow for the provision of indirect estimates of landslide volume. Despite these efforts, major issues remain, including the uncertainty in the V–A scaling, landslide amalgamation and the underdetection of landslides. To address these issues, we propose a new semiautomatic 3D point cloud differencing method to detect geomorphic changes, filter out false landslide detections due to lidar elevation errors, obtain robust landslide inventories with an uncertainty metric, and directly measure the volume and geometric properties of landslides. This method is based on the multiscale model-to-model cloud comparison (M3C2) algorithm and was applied to a multitemporal airborne lidar dataset of the Kaikōura region, New Zealand, following the Mw 7.8 earthquake of 14 November 2016. In a 5 km2 area, the 3D point cloud differencing method detects 1118 potential sources. Manual labeling of 739 potential sources shows the prevalence of false detections in forest-free areas (24.4 %), due to spatially correlated elevation errors, and in forested areas (80 %), related to ground classification errors in the pre-earthquake (pre-EQ) dataset. Combining the distance to the closest deposit and signal-to-noise ratio metrics, the filtering step of our workflow reduces the prevalence of false source detections to below 1 % in terms of total area and volume of the labeled inventory. The final predicted inventory contains 433 landslide sources and 399 deposits with a lower limit of detection size of 20 m2 and a total volume of 724 297 ± 141 087 m3 for sources and 954 029 ± 159 188 m3 for deposits. Geometric properties of the 3D source inventory, including the V–A relationship, are consistent with previous results, except for the lack of the classically observed rollover of the distribution of source area. A manually mapped 2D inventory from aerial image comparison has a better lower limit of detection (6 m2) but only identifies 258 landslide scars, exhibits a rollover in the distribution of source area of around 20 m2, and underestimates the total area and volume of 3D-detected sources by 72 % and 58 %, respectively. Detection and delimitation errors in the 2D inventory occur in areas with limited texture change (bare-rock surfaces, forests) and at the transition between sources and deposits that the 3D method accurately captures. Large rotational/translational landslides and retrogressive scars can be detected using the 3D method irrespective of area's vegetation cover, but they are missed in the 2D inventory owing to the dominant vertical topographic change. The 3D inventory misses shallow (< 0.4 m depth) landslides detected using the 2D method, corresponding to 10 % of the total area and 2 % of the total volume of the 3D inventory. Our data show a systematic size-dependent underdetection in the 2D inventory below 200 m2 that may explain all or part of the rollover observed in the 2D landslide source area distribution. While the 3D segmentation of complex clustered landslide sources remains challenging, we demonstrate that 3D point cloud differencing offers a greater detection sensitivity to small changes than a classical difference of digital elevation models (DEMs). Our results underline the vast potential of 3D-derived inventories to exhaustively and objectively quantify the impact of extreme events on topographic change in regions prone to landsliding, to detect a variety of hillslope mass movements that cannot be captured by 2D landslide mapping, and to explore the scaling properties of landslides in new ways.

2020 ◽  
Author(s):  
Thomas G. Bernard ◽  
Dimitri Lague ◽  
Philippe Steer

Abstract. Efficient and robust landslide mapping and volume estimation is essential to rapidly infer landslide spatial distribution, to quantify the role of triggering events on landscape changes and to assess direct and secondary landslide-related geomorphic hazards. Many efforts have been made during the last decades to develop landslide areal mapping methods, based on 2D satellite or aerial images, and to constrain empirical volume-area (V-A) allowing in turn to offer indirect estimates of landslide volume. Despite these efforts, some major issues remain including the uncertainty of the V-A scaling, landslide amalgamation and the under-detection of reactivated landslides. To address these issues, we propose a new semi-automatic 3D point cloud differencing method to detect geomorphic changes, obtain robust landslide inventories and directly measure the volume and geometric properties of landslides. This method is based on the M3C2 algorithm and was applied to a multi-temporal airborne LiDAR dataset of the Kaikoura region, New Zealand, following the Mw 7.8 earthquake of 14 November 2016. We demonstrate that 3D point cloud differencing offers a greater sensitivity to detect small changes than a classical difference of DEMs (digital elevation models). In a small 5 km2 area, prone to landslide reactivation and amalgamation, where a previous study identified 27 landslides, our method is able to detect 1431 landslide sources and 853 deposits with a total volume of 908,055 ± 215,640 m3 and 1,008,626 ± 172,745 m3, respectively. This high number of landslides is set by the ability of our method to detect subtle changes and therefore small landslides with a carefully constrained lower limit of 20 m2 (90 % with A 


Author(s):  
T. Shinohara ◽  
H. Xiu ◽  
M. Matsuoka

Abstract. This study introduces a novel image to a 3D point-cloud translation method with a conditional generative adversarial network that creates a large-scale 3D point cloud. This can generate supervised point clouds observed via airborne LiDAR from aerial images. The network is composed of an encoder to produce latent features of input images, generator to translate latent features to fake point clouds, and discriminator to classify false or real point clouds. The encoder is a pre-trained ResNet; to overcome the difficulty of generating 3D point clouds in an outdoor scene, we use a FoldingNet with features from ResNet. After a fixed number of iterations, our generator can produce fake point clouds that correspond to the input image. Experimental results show that our network can learn and generate certain point clouds using the data from the 2018 IEEE GRSS Data Fusion Contest.


2018 ◽  
Vol 242 ◽  
pp. 44-54 ◽  
Author(s):  
Yunfeng Ge ◽  
Huiming Tang ◽  
Ding Xia ◽  
Liangqing Wang ◽  
Binbin Zhao ◽  
...  

Author(s):  
V. N. Rakitskii ◽  
N. E. Fedorova ◽  
I. V. Bereznyak ◽  
N. G. Zavolokina ◽  
L. P. Muhina

The article presents results of studies exemplified by diquat on analysis concerning influence of lower limit value of quantitative assessment in washing sample for safety coefficient in exposure and in absorbed dose, if acting substance is absent in workplace ambient air samples and in dermal washings of workers. To control diquat in dermal washings, there is a method based on ion-pair liquid chromatography with ultraviolet detection (working wavelength 310 nm). To concentrate sample, cartridges for solid-phase extraction, containing ion exchange sorbent (Oasis MCX 6cc/500 mg), are used. Lower limit of assessment in washing sample — 0,15 micrograms. Experimentally set washing completeness is within range of 80–92%, standard deviation of repetition is 7,0% at most. The method created was tested in nature studies determining dermal exposure in workers subjected to 5 various preparations based on diquat dibromide when used for surface spraying from tractor and from aircraft. For lower limit of detection in washing sample (0,15 micrograms/washing), calculated risk value of exposure varied within 0,26–0,36; risk of absorbed dose was low — 0,23 (the allowable one ≤1). Findings are that present measuring methods which provide lower limit of detection 1 and 5 micrograms in washing sample could result in unallowable risk establishment even with absence of the substance in all samples of workplace air and dermal washings. The calculation formula suggested enables to give theoretic basis for requirements to lower limit of detecting active substances in dermal washing samples for evaluating risk of pesticides use in agriculture.


2020 ◽  
Vol 16 (3) ◽  
pp. 277-286
Author(s):  
Amal A. El-Masry ◽  
Mohammed E. A. Hammouda ◽  
Dalia R. El-Wasseef ◽  
Saadia M. El-Ashry

Background: The first highly sensitive, rapid and specific green microemulsion liquid chromatographic (MELC) method was established for the simultaneous estimation of fluticasone propionate (FLU) and azelastine HCl (AZL) in the presence of their pharmaceutical dosage form additives (phenylethyl alcohol (PEA) and benzalkonium chloride (BNZ)). Methods: The separation was performed on a C18 column using (o/w) microemulsion as a mobile phase which contains 0.2 M sodium dodecyl sulphate (SDS) as surfactant, 10% butanol as cosurfactant, 1% n-octanol as internal phase and 0.3% triethylamine (TEA) adjusted at pH 6 by 0.02 M phosphoric acid; with UV detection at 220 nm and programmed with flow rate of 1 mL/min. Results: The validation characteristics e.g. linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), accuracy, precision, robustness and specificity were investigated. The proposed method showed linearity over the concentration range of (0.5-25 µg/mL) and (0.1-25 µg/mL) for FLU and AZL, respectively. Besides that, the method was adopted in a short chromatographic run with satisfactory resolution factors of (2.39, 3.78 and 6.74 between PEA/FLU, FLU/AZL and AZL/BNZ), respectively. The performed method was efficiently applied to pharmaceutical nasal spray with (mean recoveries ± SD) (99.80 ± 0.97) and (100.26 ± 0.96) for FLU and AZL, respectively. Conclusion: The suggested method was based on simultaneous determination of FLU and AZL in the presence of PEA and BNZ in pure form, laboratory synthetic mixture and its combined pharmaceutical dosage form using green MELC technique with UV detection. The proposed method appeared to be superior to the reported ones of being more sensitive and specific, as well as the separation was achieved with good performance in a relatively short analysis time (less than 7.5 min). Highly acceptable values of LOD and % RSD make this method superior to be used in quality control laboratories with of HPLC technique.


Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Sign in / Sign up

Export Citation Format

Share Document