scholarly journals Supplementary material to "Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (v. 9.15.0) as a case study"

Author(s):  
Ksenia Aleksankina ◽  
Mathew R. Heal ◽  
Anthony J. Dore ◽  
Marcel Van Oijen ◽  
Stefan Reis
2018 ◽  
Author(s):  
Ksenia Aleksankina ◽  
Mathew R. Heal ◽  
Anthony J. Dore ◽  
Marcel Van Oijen ◽  
Stefan Reis

Abstract. Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input–output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source-receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx and NH3, from which regression coefficients for each input-output combination and each model grid (> 10,000 across the UK) were calculated. Surface concentrations of SO2, NOx and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42-, NO3- and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx and NH3 (±4 %, ±10 % and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3-, SO42- and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.


2018 ◽  
Vol 11 (4) ◽  
pp. 1653-1664 ◽  
Author(s):  
Ksenia Aleksankina ◽  
Mathew R. Heal ◽  
Anthony J. Dore ◽  
Marcel Van Oijen ◽  
Stefan Reis

Abstract. Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input–output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source–receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx, and NH3, from which regression coefficients for each input–output combination and each model grid ( >  10 000 across the UK) were calculated. Surface concentrations of SO2, NOx, and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42−, NO3−, and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx, and NH3 (±4, ±10, and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3−, SO42−, and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.


2004 ◽  
Vol 4 (4) ◽  
pp. 3975-4018 ◽  
Author(s):  
M. Krol ◽  
S. Houweling ◽  
B. Bregman ◽  
M. van den Broek ◽  
A. Segers ◽  
...  

Abstract. This paper describes the global chemistry Transport Model, version 5 (TM5) which allows two-way nested zooming. The model is used for global studies which require high resolution regionally but can work on a coarser resolution globally. The zoom algorithm introduces refinement in both space and time in some predefined regions. Boundary conditions of the zoom region are provided by a coarser parent grid and the results of the zoom area are communicated back to the parent. A case study using 222Rn measurements that were taken during the MINOS campaign reveals the advantages of local zooming. As a next step, it is investigated to what extent simulated concentrations over Europe are influenced by using an additional zoom domain over North America. An artificial ozone-like tracer is introduced with a lifetime of twenty days and simplified non-linear chemistry. The concentration differences at Mace Head (Ireland) are generally smaller than 10%, much smaller than the effects of the resolution enhancement over Europe. Thus, coarsening of resolution at some distance of a sampling station seems allowed. However, it is also noted that the budgets of the tracers change considerably due to resolution dependencies of, for instance, vertical transport. Due to the two-way nested algorithm, TM5 therefore offers a consistent tool to study the effects of grid refinement on global atmospheric chemistry issues like intercontinental transport of air pollution.


2005 ◽  
Vol 5 (2) ◽  
pp. 417-432 ◽  
Author(s):  
M. Krol ◽  
S. Houweling ◽  
B. Bregman ◽  
M. van den Broek ◽  
A. Segers ◽  
...  

Abstract. This paper describes the global chemistry Transport Model, version 5 (TM5) which allows two-way nested zooming. The model is used for global studies which require high resolution regionally but can work on a coarser resolution globally. The zoom algorithm introduces refinement in both space and time in some predefined regions. Boundary conditions of the zoom region are provided by a coarser parent grid and the results of the zoom area are communicated back to the parent. A case study using 222Rn measurements that were taken during the MINOS campaign reveals the advantages of local zooming. As a next step, it is investigated to what extent simulated concentrations over Europe are influenced by using an additional zoom domain over North America. An artificial ozone-like tracer is introduced with a lifetime of twenty days and simplified non-linear chemistry. The concentration differences at Mace Head (Ireland) are generally smaller than 10%, much smaller than the effects of the resolution enhancement over Europe. Thus, coarsening of resolution at some distance of a sampling station seems allowed. However, it is also noted that the budgets of the tracers change considerably due to resolution dependencies of, for instance, vertical transport. Due to the two-way nested algorithm, TM5 offers a consistent tool to study the effects of grid refinement on global atmospheric chemistry issues like intercontinental transport of air pollution.


2013 ◽  
Vol 13 (14) ◽  
pp. 7225-7240 ◽  
Author(s):  
J. Barré ◽  
L. El Amraoui ◽  
P. Ricaud ◽  
W. A. Lahoz ◽  
J.-L. Attié ◽  
...  

Abstract. The behavior of the extratropical transition layer (ExTL) is investigated using a chemistry transport model (CTM) and analyses derived from assimilation of MLS (Microwave Limb Sounder) O3 and MOPITT (Measurements Of Pollution In The Troposphere) CO data. We firstly focus on a stratosphere–troposphere exchange (STE) case study that occurred on 15 August 2007 over the British Isles (50° N, 10° W). We evaluate the effect of data assimilation on the O3–CO correlations. It is shown that data assimilation disrupts the relationship in the transition region. When MLS O3 is assimilated, CO and O3 values are not consistent between each other, leading to unphysical correlations at the STE location. When MLS O3 and MOPITT CO assimilated fields are taken into account in the diagnostics the relationship happens to be more physical. We then use O3–CO correlations to quantify the effect of data assimilation on the height and depth of the ExTL. When the free-model run O3 and CO fields are used in the diagnostics, the ExTL distribution is found 1.1 km above the thermal tropopause and is 2.6 km wide (2σ). MOPITT CO analyses only slightly sharpen (by −0.02 km) and lower (by −0.2 km) the ExTL distribution. MLS O3 analyses provide an expansion (by +0.9 km) of the ExTL distribution, suggesting a more intense O3 mixing. However, the MLS O3 analyses ExTL distribution shows a maximum close to the thermal tropopause and a mean location closer to the thermal tropopause (+0.45 km). When MLS O3 and MOPITT CO analyses are used together, the ExTL shows a mean location that is the closest to the thermal tropopause (+0.16 km). We also extend the study at the global scale on 15 August 2007 and for the month of August 2007. MOPITT CO analyses still show a narrower chemical transition between stratosphere and troposphere than the free-model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together, the ExTL matches the thermal tropopause poleward of 50°.


Sign in / Sign up

Export Citation Format

Share Document