scholarly journals Supplementary material to "Role of emission sources and atmospheric sink on the seasonal cycle of CH<sub>4</sub> and δ<sup>13</sup>-CH<sub>4</sub>: analysis based on the atmospheric chemistry transport model TM5"

Author(s):  
Vilma Kangasaho ◽  
Aki Tsuruta ◽  
Leif Backman ◽  
Pyry Mäkinen ◽  
Sander Houweling ◽  
...  
2007 ◽  
Vol 7 (4) ◽  
pp. 10043-10063 ◽  
Author(s):  
H. Yang ◽  
Y. Gao

Abstract. Aeolian dust provides the major micronutrient of soluble Fe to organisms in certain regions of the global ocean. In this study, we conduct numerical experiments using the MOZART-2 atmospheric chemistry transport model to simulate the global distribution of soluble Fe flux and Fe solubility. One of the mechanisms behind the hypothesis of acid mobilization of Fe in the atmosphere is that the coating of acidic gases changes dust from hydrophobic to hydrophilic, a prerequisite of Fe mobilization. We therefore include HNO3, SO2 and sulfate (SO42−) as dust transformation agents in the model. General agreement in Fe solubility within a factor of 2 is achieved between model and observations. The total flux of soluble Fe to the world ocean is estimated to be 731–924×109 g yr−1, and the average Fe solubility is 6.4–8.0%. Wet deposition contributes over 80% to total soluble Fe flux to most of the world oceans. Special attention is paid to the relative role of HNO3 versus SO2 and sulfate. We demonstrate that coating by HNO3 produces over 36% of soluble Fe fluxes compared to that by SO2 and sulfate combined in every major oceanic basin. Given present trends in the emissions of NOx and SO2, the relative contribution of HNO3 to Fe mobilization may get even larger in the future.


2008 ◽  
Vol 42 (8) ◽  
pp. 2943-2948 ◽  
Author(s):  
Kaj M. Hansen ◽  
Crispin J. Halsall ◽  
Jesper H. Christensen ◽  
Jørgen Brandt ◽  
Lise M. Frohn ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 5837-5859
Author(s):  
Rostislav Kouznetsov ◽  
Mikhail Sofiev ◽  
Julius Vira ◽  
Gabriele Stiller

Abstract. The paper presents a comparative study of age of air (AoA) derived from several approaches: a widely used passive-tracer accumulation method, the SF6 accumulation, and a direct calculation of an ideal-age tracer. The simulations were performed with the Eulerian chemistry transport model SILAM driven with the ERA-Interim reanalysis for 1980–2018. The Eulerian environment allowed for simultaneous application of several approaches within the same simulation and interpretation of the obtained differences. A series of sensitivity simulations revealed the role of the vertical profile of turbulent diffusion in the stratosphere, destruction of SF6 in the mesosphere, and the effect of gravitational separation of gases with strongly different molar masses. The simulations reproduced well the main features of the SF6 distribution in the atmosphere observed by the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) satellite instrument. It was shown that the apparent very old air in the upper stratosphere derived from the SF6 profile observations is a result of destruction and gravitational separation of this gas in the upper stratosphere and the mesosphere. These processes make the apparent SF6 AoA in the stratosphere several years older than the ideal-age AoA, which, according to our calculations, does not exceed 6–6.5 years. The destruction of SF6 and the varying rate of emission make SF6 unsuitable for reliably deriving AoA or its trends. However, observations of SF6 provide a very useful dataset for validation of the stratospheric circulation in a model with the properly implemented SF6 loss.


2011 ◽  
Vol 11 (18) ◽  
pp. 9709-9719 ◽  
Author(s):  
D. Mogensen ◽  
S. Smolander ◽  
A. Sogachev ◽  
L. Zhou ◽  
V. Sinha ◽  
...  

Abstract. We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiälä, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for ~30–50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds and increases during summer. The summertime canopy level OH-reactivity peaks during night and the vertical OH-reactivity decreases with height.


2012 ◽  
Vol 9 (8) ◽  
pp. 2821-2830 ◽  
Author(s):  
A. A. Bloom ◽  
P. I. Palmer ◽  
A. Fraser ◽  
D. S. Reay

Abstract. We develop a dynamic methanogen-available carbon model (DMCM) to quantify the role of the methanogen-available carbon pool in determining the spatial and temporal variability of tropical wetland CH4 emissions over seasonal timescales. We fit DMCM parameters to satellite observations of CH4 columns from SCIAMACHY CH4 and equivalent water height (EWH) from GRACE. Over the Amazon River basin we found substantial seasonal variability of this carbon pool (coefficient of variation = 28 ± 22%) and a rapid decay constant (φ = 0.017 day−1), in agreement with available laboratory measurements, suggesting that plant litter is likely the prominent methanogen carbon source over this region. Using the DMCM we derived global CH4 emissions for 2003–2009, and determined the resulting seasonal variability of atmospheric CH4 on a global scale using the GEOS-Chem atmospheric chemistry and transport model. First, we estimated that tropical emissions amounted to 111.1 Tg CH4 yr−1, of which 24% was emitted from Amazon wetlands. We estimated that annual tropical wetland emissions increased by 3.4 Tg CH4 yr−1 between 2003 and 2009. Second, we found that the model was able to reproduce the observed seasonal lag of CH4 concentrations peaking 1–3 months before peak EWH values. We also found that our estimates of CH4 emissions substantially improved the comparison between the model and observed CH4 surface concentrations (r = 0.9). We anticipate that these new insights from the DMCM represent a fundamental step in parameterising tropical wetland CH4 emissions and quantifying the seasonal variability and future trends of tropical CH4 emissions.


Sign in / Sign up

Export Citation Format

Share Document