scholarly journals eSCAPE: Regional to Global Scale Landscape Evolution Model v2.0

Author(s):  
Tristan Salles

Abstract. eSCAPE is a Python-based landscape evolution model that simulates over geological time (1) the dynamic of the landscape, (2) the transport of sediment from source to sink, and (3) continental and marine sedimentary basins formation under different climatic and tectonic conditions. eSCAPE is open-source, cross-platform, distributed under the GPLv3 license and available on GitHub (escape-model.github.io). Simulated processes rely on a simplified mathematical representation of landscape processes – the stream power and creep laws – to compute Earth's surface evolution by rivers and hillslope transport. The main difference with previous models is in the underlying numerical formulation of the mathematical equations. The approach is based on a series of implicit iterative algorithms defined in matrix form to calculate both drainage area from multiple flow directions and erosion/deposition processes. eSCAPE relies on PETSc parallel library to solve these matrix systems. Along with the description of the algorithms, examples are provided and illustrate the model current capabilities and limitations. eSCAPE is the first landscape evolution model able to simulate processes at global scale and is primarily designed to address problems on large unstructured grids (several millions of nodes).

2019 ◽  
Vol 12 (9) ◽  
pp. 4165-4184 ◽  
Author(s):  
Tristan Salles

Abstract. The eSCAPE model is a Python-based landscape evolution model that simulates over geological time (1) the dynamics of the landscape, (2) the transport of sediment from source to sink, and (3) continental and marine sedimentary basin formation under different climatic and tectonic conditions. The eSCAPE model is open-source, cross-platform, distributed under the GPLv3 licence, and available on GitHub (http://escape.readthedocs.io, last access: 23 September 2019). Simulated processes rely on a simplified mathematical representation of landscape processes – the stream power and creep laws – to compute Earth's surface evolution by rivers and hillslope transport. The main difference with previous models is in the underlying numerical formulation of the mathematical equations. The approach is based on a series of implicit iterative algorithms defined in matrix form to calculate both drainage area from multiple flow directions and erosion–deposition processes. The eSCAPE model relies on the PETSc parallel library to solve these matrix systems. Along with the description of the algorithms, examples are provided to illustrate the model current capabilities and limitations. It is the first landscape evolution model able to simulate processes at the global scale and is primarily designed to address problems on large unstructured grids (several million nodes).


2020 ◽  
Author(s):  
Benjamin Campforts ◽  
Charles M. Shobe ◽  
Philippe Steer ◽  
Dimitri Lague ◽  
Matthias Vanmaercke ◽  
...  

<p>Landslides are key agents of sediment production and transport. Ongoing efforts to map and simulate landslides continuously improve our knowledge of landslide mechanisms. However, understanding sediment dynamics following landslide events is equally crucial for developing hazard mitigation strategies. An outstanding research challenge is to better constrain the dynamic feedbacks between landslides and fluvial processes.  Fluvial processes simultaneously (i) act as conveyor belts evacuating landslide-derived sediment and (ii) lower the hillslope’s base level triggering further landsliding. Landslides in turn can choke river channels with sediment, thereby critically altering fluvial responses to external tectonic or climatic perturbations.</p><p>Here, we present HYLANDS, a hybrid landscape evolution model, which is designed to numerically simulate both landslide activity and sediment dynamics following mass failure. The hybrid nature of the model is in its capacity to simulate both erosion and deposition at any place in the landscape. This is achieved by coupling the existing SPACE (Stream Power with Alluvium Conservation and Entrainment) model for channel incision with a new module simulating rapid, stochastic mass wasting (landsliding). </p><p>In this contribution, we first illustrate the functionality of HYLANDS to capture river dynamics ranging from detachment-limited to transport-limited configurations. Subsequently, we apply the model to a portion of the Namche-Barwa massive in Eastern Tibet and compare simulated and observed landslide magnitude-frequency and area-volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating stochastic landsliding and sediment dynamics over longer timescales on landscape evolution in general and river dynamics in particular under varying climatologic and tectonic configurations.</p><p>With HYLANDS we provide a hybrid tool to understand both the long and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics. We further highlight its unique potential of bridging those timescales to generate better assessments of both on-site and downstream landslide risks.</p>


2018 ◽  
Vol 6 (3) ◽  
pp. 779-808 ◽  
Author(s):  
Nikos Theodoratos ◽  
Hansjörg Seybold ◽  
James W. Kirchner

Abstract. The scaling and similarity of fluvial landscapes can reveal fundamental aspects of the physics driving their evolution. Here, we perform a dimensional analysis of the governing equation of a widely used landscape evolution model (LEM) that combines stream-power incision and linear diffusion laws. Our analysis assumes that length and height are conceptually distinct dimensions and uses characteristic scales that depend only on the model parameters (incision coefficient, diffusion coefficient, and uplift rate) rather than on the size of the domain or of landscape features. We use previously defined characteristic scales of length, height, and time, but, for the first time, we combine all three in a single analysis. Using these characteristic scales, we non-dimensionalize the LEM such that it includes only dimensionless variables and no parameters. This significantly simplifies the LEM by removing all parameter-related degrees of freedom. The only remaining degrees of freedom are in the boundary and initial conditions. Thus, for any given set of dimensionless boundary and initial conditions, all simulations, regardless of parameters, are just rescaled copies of each other, both in steady state and throughout their evolution. Therefore, the entire model parameter space can be explored by temporally and spatially rescaling a single simulation. This is orders of magnitude faster than performing multiple simulations to span multidimensional parameter spaces. The characteristic scales of length, height and time are geomorphologically interpretable; they define relationships between topography and the relative strengths of landscape-forming processes. The characteristic height scale specifies how drainage areas and slopes must be related to curvatures for a landscape to be in steady state and leads to methods for defining valleys, estimating model parameters, and testing whether real topography follows the LEM. The characteristic length scale is roughly equal to the scale of the transition from diffusion-dominated to advection-dominated propagation of topographic perturbations (e.g., knickpoints). We introduce a modified definition of the landscape Péclet number, which quantifies the relative influence of advective versus diffusive propagation of perturbations. Our Péclet number definition can account for the scaling of basin length with basin area, which depends on topographic convergence versus divergence.


2020 ◽  
Author(s):  
Cian Clinton-Gray ◽  
Sabin Zahirovic ◽  
Claire Mallard ◽  
Tristan Salles ◽  
Daniela Garrad

<p>The North Slope of Alaska has experienced a complex tectonic and geodynamic history. Although regional paleogeographic reconstructions for the North Slope of Alaska have been interpreted from the geological record, a process-based understanding of the source-to-sink system accounting for both the landscape and sedimentary basin evolution of the region has not been undertaken. Additionally, the interaction of the complex tectonic and climatic forces and their influence on the development of sedimentary basins is not well understood. </p><p>We investigate the influence of tectonics (including deep mantle flow), eustasy and isostasy (including flexure) on the source to sink system on the North Slope to better understand its evolution since the Jurassic.</p><p>We use a quantitative forward modelling approach with the open-source surface evolution code Badlands () which incorporate time-dependent dynamic topography estimates from mantle convection models linking plate motions and mantle flow. We present a new method to implement 3D tectonic displacements (including dynamic topography) in landscape evolution models.  </p><p>The models capture the North Slope’s complex tectonic history and reproduce the sediment depositional trends as observed from the sedimentological record. The spatial variation in dynamic topography through time results in tilting of the basin which influenced sediment routing directions. Sea-level fluctuations significantly slow the depositional system, trapping more sediment in the proximal basin. Cross-sections of the modelled deposition are used to more closely analyse the shelf margin evolution. They reveal that the models reproduce the large-scale stratal geometries observed from the seismic record, as well as the shelf margin trajectory shifts since the Jurassic. This study demonstrates the importance of linking deep Earth processes to landscape evolution models to gain a better understanding of the long-term evolution of sedimentary basins.</p>


2013 ◽  
Vol 1 (1) ◽  
pp. 891-921
Author(s):  
T. Croissant ◽  
J. Braun

Abstract. In the past few decades, many studies have been dedicated to our understanding of the interactions between tectonic and erosion and, in many instances, using numerical models of landscape evolution. Among the numerous parameterizations that have been developed to predict river channel evolution, the Stream Power Law, which links erosion rate to drainage area and slope, remains the most widely used. Despite its simple formulation, its power lies in its capacity to reproduce many of the characteristic features of natural systems (the concavity of river profile, the propagation of knickpoints, etc.). However, the three main coefficients that are needed to relate erosion rate to slope and drainage area in the Stream Power Law remain poorly constrained. In this study, we present a novel approach to constrain the Stream Power Law coefficients under the detachment limited mode by combining a highly efficient Landscape Evolution Model, FastScape, which solves the Stream Power Law under arbitrary geometries and boundary conditions and an inversion algorithm, the Neighborhood Algorithm. A misfit function is built by comparing topographic data of a reference landscape supposedly at steady state and the same landscape subject to both uplift and erosion over one time step. By applying the method to a synthetic landscape, we show that different landscape characteristics can be retrieved, such as the concavity of river profiles and the steepness index. When applied on a real catchment (in the Whataroa region of the South Island in New Zealand), this approach provide well resolved constraints on the concavity of river profiles and the distribution of uplift as a function of distance to the Alpine Fault, the main active structure in the area.


2014 ◽  
Vol 2 (1) ◽  
pp. 155-166 ◽  
Author(s):  
T. Croissant ◽  
J. Braun

Abstract. In the past few decades, many studies have been dedicated to the understanding of the interactions between tectonics and erosion, in many instances through the use of numerical models of landscape evolution. Among the numerous parameterizations that have been developed to predict river channel evolution, the stream power law, which links erosion rate to drainage area and slope, remains the most widely used. Despite its simple formulation, its power lies in its capacity to reproduce many of the characteristic features of natural systems (the concavity of river profile, the propagation of knickpoints, etc.). However, the three main coefficients that are needed to relate erosion rate to slope and drainage area in the stream power law remain poorly constrained. In this study, we present a novel approach to constrain the stream power law coefficients under the detachment-limited mode by combining a highly efficient landscape evolution model, FastScape, which solves the stream power law under arbitrary geometries and boundary conditions and an inversion algorithm, the neighborhood algorithm. A misfit function is built by comparing topographic data of a reference landscape supposedly at steady state and the same landscape subject to both uplift and erosion over one time step. By applying the method to a synthetic landscape, we show that different landscape characteristics can be retrieved, such as the concavity of river profiles and the steepness index. When applied on a real catchment (in the Whataroa region of the South Island in New Zealand), this approach provides well-resolved constraints on the concavity of river profiles and the distribution of uplift as a function of distance to the Alpine Fault, the main active structure in the area.


Sign in / Sign up

Export Citation Format

Share Document