drainage area
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 97)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Francisco Martinez ◽  
Hermann Manriquez ◽  
Alberto Ojeda ◽  
Gabriel Olea

Chilean geography is highly variable, not only from a climatic and hydrological point of view, but also a morphological one, showing unpredictable natural patterns with marked contrasts throughout the country, for which sometimes it is considered as a "crazy" geography. In this paper we have investigated this apparent disorganized character by exploring the fractal properties of fluvial networks extracted from basins distributed across the continental territory. Analytical and semi-empirical methods were applied, finding striking patterns of organization in the distributions of Horton parameters and the fractal dimension of the drainage networks. Fractal dimension reveals to be quite dependent on the drainage area of each unit, showing clear groupings by tectonic and climatological factors. Such dimension reveals to be an important geomorphic parameter, if not the only one able to capture the real morphology of a fluvial network. From our results and despite the diversity of landforms, hydrological, climatic and tectonic conditions, Chilean’s geography is perhaps not as crazy and disorganized as believed.


2021 ◽  
Vol 13 (24) ◽  
pp. 5053
Author(s):  
Jiaxi Wang ◽  
Yan Zhang ◽  
Jiayong Deng ◽  
Shuangwu Yu ◽  
Yiyang Zhao

The gully erosion process is influenced by both natural conditions and human activities on the tableland region, the Chinese Loess Plateau, which is a densely populated agricultural area with unique topography. For the purpose of assessing long-term gully growth rates, the influencing factors and potential of gully growth, KH-4B satellite images, Quickbird-2 images, and unmanned aerial vehicle (UAV) images were used to assess gully erosion from 1969 to 2019. The effects of runoff, topography and human activities were analyzed with information derived from historical and present images. Ninety-five investigated gullies were classified into four types: 45 growing, 25 stable, 21 infilled and four excavated gullies. The rates (RA) of 45 growing gullies ranged from 0.50 to 20.94 m2·yr−1, with an average of 5.66 m2·yr−1 from 1969 to 2010. The present drainage area, local slope, average drainage slope, annual runoff, and ratio of the terraced area were all significantly different between the stable and growing gullies. The long-term gully growth rate could be estimated using a nonlinear regression model with annual runoff (Qa) and the slope of the drainage area (Sd) as predictors (RA = 0.301Qa0.562Sd, R2 = 0.530). Based on the Sg-A and Sg-Qa relationship that was used to reveal the threshold conditions for gully growth, all growing gullies still have the potential to keep growing, but soil and water conservation measures, including terraces, could change the threshold condition by reducing the effective drainage area. The results of this study could be helpful for preventing further gully erosion by dealing with gullies far above the threshold line.


2021 ◽  
Vol 3 (1) ◽  
pp. 007-019
Author(s):  
Henggar Risa Destania ◽  
Achmad Syarifudin

Sediment-related disasters are terrible disasters that can catastrophically impact facilities. People must keep in mind to make sediment-related disaster information that can be predicted from rainfall and response of drainage area by using snakelike. This research produces important indices on precipitation related to debris. It shows the current status of the stage of the response of drainage area against rainfall by using a couple of short- and long-term indices. It shows the water storage volume in the soil layer with the calculation of soil water index (SWI) by using X-band MP (Multi-Parameter) rainfall radar data that has been installed at the top of Merapi Mountain (Merapi Museum). It was confirmed that from June 2018 – June 2019, with 80.28 mm SWI, maximum values do not exceed the standard reference value of SWI (120 – 160 mm) set from JMA. It means that 80.28 mm of SWI value has not yet become the maximum limit of SWI value for lahar occurrence in the Boyong drainage area (BO-D5). The maximum limit of SWI value can be generated if sediment disaster occurrences are available.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Jakub Jeřábek ◽  
David Zumr

Catchment drainage area is a basic spatial unit in landscape hydrology within which the authorities estimate a water balance and manage water resources. The catchment drainage area is commonly delineated based on the surface topography, which is determined using a digital elevation model. Therefore, only a flow over the surface is implicitly considered. However, a substantial portion of the rainfall water infiltrates and percolates through the soil profile to the groundwater, where geological structures control the drainage area instead of the topography of the soil surface. The discrepancy between the surface topography-based and bedrock-based drainage area can cause large discrepancies in water balance calculation. It this paper we present an investigation of the subsurface media stratification in a headwater catchment in the central part of the Czech Republic using a geophysical survey method - electrical resistivity tomography (ERT). Results indicate that the complexity of the subsurface geological layers cannot be estimated solely from the land surface topography. Although shallow layers copy the shape of the surface, the deeper layers do not. This finding has a strong implication on the water transport regime since it suggests that the deep drainage may follow different pathways and flow in other directions then the water in shallow soil profile or shallow subsurface structures.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2903
Author(s):  
Hui Yang ◽  
Jiansheng Cao

In this study, based on the DEM, we extracted the drainage networks and watersheds of the Daqing Riverwith ArcGIS, investigated the basin characteristicsandthe differences in their spatial distributions and analyzed the relations of the drainagedensity with some surface conditions and how the drainagedensityinfluenced the water yield. The results suggested a power function between the mainstream length and drainage area, showing that withthe increase in basin area, the basins became longer.The result of the power function between the relief and drainage area with negative exponent values means the relief changed more slowly with increasing basin area.The values of the circularity ratio andelongation ratio indicatethat the basin shape of the mountain watersheds in theDaqing River was narrow and predisposed to flooding during periods of heavy rainfall. The orders of the streams in the mountain watersheds ranged from five to seven.The average bifurcation ratio of those nine mountainous watersheds reveals the order of the u+1 rivers in each basin of the Daqing River was on average 4 times larger than that of order u rivers. The drainage density (Dd) was high in the north and low in the south of the Daqing River. Rainfall wasnegatively correlated with drainage density, but the correlation between them was notsignificant atthe 0.05 level. Drainages developed in places with poor vegetation cover.The drainages in the southwest, north and west developed considerably, while drainages in the east and southeast did not develop much. Yet, the available data showed the impact of the watershed area, elongation ratio and drainage density on the water yield was not significant. In contrast, there was a significant positive correlation between channel slope and the water yield modulus. The hypsometric integrals and the relation between drainage density and hypsometric integral suggest that the landform evolution of the mountain basins alongthe Daqing Riverwerein the old stage with no furtherincrease trend of drainage density in the future.


2021 ◽  
Author(s):  
Alejandro Lerza ◽  
Sergio Cuervo ◽  
Sahil Malhotra

Abstract In Shale and Tight, the term "Parent-Child effect" refers to the impact the depleted area and corresponding stress changes originated by the production of a previously drilled well, the "parent", has over the generated hydraulic fracture geometry, conforming initial drainage area and consequent production performance of a new neighbor well, called "child". Such effect might be considered analogous to the no flow boundary created when the drainage areas of two wells meet at a certain distance from them in conventional reservoirs; but, unconventional developments exhibit higher exposure to a more impactful version of this phenomena, given their characteristic tighter well spacing and the effect pressure depletion of the nearby area by the neighbor well has over the child well's hydraulic fracture development. Due to the importance the Parent-Child effect has for unconventional developments, this study aims first to generally characterize this effect and then quantify its expected specific project impact based on real field data from the Vaca Muerta formation. To do so, we developed a methodology where fracture and reservoir simulation were applied for calibrating a base model using field observed data such as microseismic, tracers, daily production data and well head pressure measurements. The calibrated model was then coupled with a geomechanical reservoir simulator and used to predict pressure and stress tensor profiles across different depletion times. On these different resulting scenarios, child wells were hydraulically fractured with varying well spacing and completion designs. Finally, the Expected Ultimate Recovery (EUR) impact versus well spacing and the parent´s production time were built for different child´s completion design alternatives, analyzed and contrasted against previously field observed data. Results obtained from the characterization work suggests the parent child effect is generated by a combination of initial drainage area changes and stress magnitude and direction changes, which are both dependent of the pressure depletion from the parent well. Furthermore, the results show how the well spacing and parent's production timing, as well as parent's and child's completion design, significantly affect the magnitude of the expected parent child effect impact over the child's EUR.


2021 ◽  
Author(s):  
Hafiz Mustafa Ud Din Sheikh ◽  
W. J. Lee ◽  
H. S. Jha

Abstract This paper presents a simple method to model boundary-dominated flow in hydraulically fractured wells, including horizontal wells with multiple fractures. While these wells are almost always producedat more nearly constant BHP rather than constant rate, use of material-balance time transforms variable-rate production profiles to constant-rate profiles, allowing us to use the pseudo-steady-state (PSS) flow equation for modeling. However, the PSS equation requires use of shape factors in applications, and shape factors available in the literature are available only for square-shaped bounded reservoirs with hydraulic fractures. In this work, we derived shape factors for wells centered in rectangular-shaped drainage areas with different length-to-width aspect ratios. The superposition principle can be used to transform transient radial flow and transient linear flow solutions into bounded reservoir solutions. At large times (when boundary-dominated flow is established), results from these solutions are similar to those obtained from the PSS equation. Therefore, for a pre-defined reservoir geometry, pressure drop values from superimposed transient flow equationscan be substituted back into the PSS equation to calculate shape factors for that reservoir geometry.We used shape factors previously presented by other authors for square drainage areas to validate themethod before applying it to calculate shape factors for more general drainage area configurations. We present shape factors for different fracture half-length to fracture-spacing ratios ranging from 0.2 to 10. Calculated shape factors, when plotted against the fracture half-length to fracture-spacing ratio, produced a smooth curve which can be used to interpolate shape factor values for other fracture configurations. We present applications of this methodology to example low-permeability wells. The use of the PSS equation for wells with vertical fracturescan be extended to multi-fractured horizontal wells (MFHWs) by incorporating the number of fractures in the equation; hence, shape factorsderived for wells with vertical fractures can also be used for MFHWs. Although our results are rigorously correct only for fluids with constant compressibility, use of pseudo-pressure and pseudo-time transformations extend application to compressible fluids, notably gases. Using the PSS equation in production data analysis allows us to calculate contributing reservoir volume and drainage area in a simple manner not requiring use of specialized software.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2145
Author(s):  
Fei Shi ◽  
Yuanyuan Lu ◽  
Fan Wu ◽  
Chengxiang Wang ◽  
Wei-Ling Hsu

The phrase ‘green cities’ refers to an idealised and modernised urban development model that features harmonious development among the environment, ecology, society, culture, and the inhabitants of a city. Harmonious humanistic relations and green pathways have become predominant models in modern urban development. Green city construction has drawn considerable attention. However, the construction and development of green cities involves numerous problems. The various needs of different populations must be coordinated to foster the green development of a city. In this study, the analytic hierarchy process was used to classify factors related to green city construction into different levels. The scope of the empirical verification was eight cities alongshore the drainage area of the Jiangsu section of the Beijing–Hangzhou Canal. Data from 2009, 2014, and 2019 were selected for analysis. Both quantitative and qualitative analyses were performed using these data, and standards were established to serve as a reference for city administrators in the process of decision-making regarding green city construction.


Sign in / Sign up

Export Citation Format

Share Document