scholarly journals ISWFoam: A numerical model for internal solitary wave simulation in continuously stratified fluids

2021 ◽  
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

Abstract. A numerical model, ISWFoam, for simulating internal solitary waves (ISWs) in continuously stratified, incompressible, viscous fluids is developed based on a fully three-dimensional (3D) Navier-Stokes equation using the open source code OpenFOAM. This model combines the density transport equation with the Reynolds-averaged Navier-Stokes equation with the Coriolis force, and the model discrete equation adopts the finite volume method. The k-ω SST turbulence model has also been modified accordingly to the variable density field. ISWFoam provides two initial wave generation methods to generate an ISW in continuously stratified fluids, including solving the weakly nonlinear models of the extended Korteweg–de Vries (eKdV) equation and the fully nonlinear models of the Dubreil-Jacotin-Long (DJL) equation. Grid independence tests for ISWFoam are performed, considering the accuracy and computing efficiency, the appropriate grid size of the ISW simulation is recommended to be one-one hundred and fiftieth of the characteristic length and one-twenty fifth of the ISW amplitude. Model verifications are conducted through comparisons between the simulated and experimental data for ISW propagation examples over a flat bottom section, including laboratory scale and actual ocean scale, a submerged triangular ridge, a Gaussian ridge and slope. The laboratory test results, including the ISW profile, wave breaking location, ISW arrival time, and the spatial and temporal changes in the mixture region, are well reproduced by ISWFoam. The ISWFoam model with unstructured grids and local mesh refinement can accurately simulate the generation and evolution of ISWs, the ISW breaking phenomenon and the interaction between ISWs and complex structures and topography.

2022 ◽  
Vol 15 (1) ◽  
pp. 105-127
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

Abstract. A numerical model, ISWFoam, for simulating internal solitary waves (ISWs) in continuously stratified, incompressible, viscous fluids is developed based on a fully three-dimensional (3D) Navier–Stokes equation using the open-source code OpenFOAM®. This model combines the density transport equation with the Reynolds-averaged Navier–Stokes equation with the Coriolis force, and the model discrete equation adopts the finite-volume method. The k–ω SST turbulence model has also been modified according to the variable density field. ISWFoam provides two initial wave generation methods to generate an ISW in continuously stratified fluids, including solving the weakly nonlinear models of the extended Korteweg–de Vries (eKdV) equation and the fully nonlinear models of the Dubreil–Jacotin–Long (DJL) equation. Grid independence tests for ISWFoam are performed, and considering the accuracy and computing efficiency, the appropriate grid size of the ISW simulation is recommended to be 1/150th of the characteristic length and 1/25th of the ISW amplitude. Model verifications are conducted through comparisons between the simulated and experimental data for ISW propagation examples over a flat bottom section, including laboratory scale and actual ocean scale, a submerged triangular ridge, a Gaussian ridge, and slope. The laboratory test results, including the ISW profile, wave breaking location, ISW arrival time, and the spatial and temporal changes in the mixture region, are well reproduced by ISWFoam. The ISWFoam model with unstructured grids and local mesh refinement can effectively simulate the evolution of ISWs, the ISW breaking phenomenon, waveform inversion of ISWs, and the interaction between ISWs and complex topography.


2021 ◽  
Vol 9 (12) ◽  
pp. 1374
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

A numerical model of internal solitary waves in continuously stratified fluids is developed by introducing a density transport equation to the three-dimensional Navier–Stokes equation and adopting the fully nonlinear models of the Dubreil-Jacotin-Long equation to obtain the initial field of the ISW. The corresponding turbulence model has also been modified to ensure that it considers the variable density field. Comparisons between numerical simulation results and experimental results show that the total resistance, the nondimensional pressure coefficient, and the nondimensional friction coefficient for the standard submarine model proposed by the Defense Advanced Research Projects Agency under different flow field conditions are highly consistent with the experimental results. The model established is used to numerically analyse the forces and moments of the standard submarine model encountering ISWs at different submergence depths. The influence of the rotation centre position on the moment is discussed, and the position range of the optimal rotation centre is proposed.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 847-851 ◽  
Author(s):  
Guo-Ping Gao ◽  
Carlo Cattani ◽  
Xiao-Jun Yang

In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.


Author(s):  
Gao Ge

The artificial damping and compressibility method (ADC) is a rapid numerical technique for solving steady three-dimensional incompressible and compressible Navier-Stokes equation. The principle of this method lies in the introduction of an artificial damping factor into the group of linear equations, by which the elliptic equation is replaced, and the final results do not depend on the artificial terms. The consistency of this method for viscous flow is proved theoretically. The advantages of the SMAC method, the artificial compressibility method and the dynamic relaxation method are retained in the ADC method. Sample calculation of a bending jet is included. The results show that the convergence rate for calculating three-dimensional elliptic flow problems increases by 3–4 order of magnitude as compared with the SOR method.


2015 ◽  
Vol 783 ◽  
pp. 412-447 ◽  
Author(s):  
Basile Gallet

We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body force. This system admits vertically invariant solutions that satisfy the 2D Navier–Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations. We first consider the 3D rotating Navier–Stokes equation linearized around a statistically steady 2D flow solution. We show that this base flow is linearly stable to vertically dependent perturbations when the global rotation is fast enough: under a Reynolds-number-dependent threshold value$Ro_{c}(Re)$of the Rossby number, the flow becomes exactly 2D in the long-time limit, provided that the initial 3D perturbations are small. We call this property linear two-dimensionalization. We compute explicit lower bounds on$Ro_{c}(Re)$and therefore determine regions of the parameter space$(Re,Ro)$where such exact two-dimensionalization takes place. We present similar results in terms of the forcing strength instead of the root-mean-square velocity: the global attractor of the 2D Navier–Stokes equation is linearly stable to vertically dependent perturbations when the forcing-based Rossby number$Ro^{(f)}$is lower than a Grashof-number-dependent threshold value$Ro_{c}^{(f)}(Gr)$. We then consider the fully nonlinear 3D rotating Navier–Stokes equation and prove absolute two-dimensionalization: we show that, below some threshold value$Ro_{\mathit{abs}}^{(f)}(Gr)$of the forcing-based Rossby number, the flow becomes two-dimensional in the long-time limit, regardless of the initial condition (including initial 3D perturbations of arbitrarily large amplitude). These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number$Re$and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone–anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.


Sign in / Sign up

Export Citation Format

Share Document