scholarly journals Supplementary material to "Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model RegCM4.6"

Author(s):  
Sudipta Ghosh ◽  
Sagnik Dey ◽  
Sushant Das ◽  
Nicole Riemer ◽  
Graziano Giuliani ◽  
...  
2021 ◽  
Author(s):  
Sudipta Ghosh ◽  
Sagnik Dey ◽  
Sushant Das ◽  
Nicole Riemer ◽  
Graziano Giuliani ◽  
...  

Abstract. Mitigation of carbonaceous aerosol emissions is expected to provide climate and health co-benefits. The accurate representation of carbonaceous aerosols in climate models is critical for reducing uncertainties in their climate feedbacks. In this regard, emission fluxes and aerosol life-cycle processes are the two primary sources of uncertainties. Here we demonstrate that incorporating a dynamic ageing scheme and emission estimates that are updated for the local sources improve the representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model, RegCM, compared to its default configuration. The mean BC and OC surface concentrations in 2010 are estimated to be 4.25 and 10.35 μg m−3, respectively, over the Indo-Gangetic Plain (IGP), in the augmented model. The BC column burden over the polluted IGP is found to be 2.47 mg m−2, 69.95 % higher than in the default model configuration and much closer to available observations. The anthropogenic AOD increases by more than 19 % over the IGP due to the model enhancement, also leading to a better agreement with observed AOD. The top-of-the-atmosphere, surface, and atmospheric anthropogenic aerosol shortwave radiative forcing are estimated at −0.3, −9.3, and 9.0 W m−2, respectively, over the IGP and −0.89, −5.33, and 4.44 W m−2, respectively, over Peninsular India. Our results suggest that both the accurate estimates of emission fluxes and a better representation of aerosol processes are required to improve the aerosol life cycle representation in the climate model.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2016 ◽  
Vol 20 (5) ◽  
pp. 1765-1784 ◽  
Author(s):  
Subhadeep Halder ◽  
Subodh K. Saha ◽  
Paul A. Dirmeyer ◽  
Thomas N. Chase ◽  
Bhupendra Nath Goswami

Abstract. Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over central India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. It is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.


Sign in / Sign up

Export Citation Format

Share Document