scholarly journals The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

2014 ◽  
Vol 7 (3) ◽  
pp. 1137-1157 ◽  
Author(s):  
J. C. Kaiser ◽  
J. Hendricks ◽  
M. Righi ◽  
N. Riemer ◽  
R. A. Zaveri ◽  
...  

Abstract. We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation; version: MADE3v2.0b), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse mode particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl) / chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealised marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HCl / Cl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse mode particles. MADE3 and PartMC-MOSAIC show substantial differences in the fine particle size distributions (sizes ≲ 2 μm) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distributions (sizes ≳ 2 μm), and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

2014 ◽  
Vol 7 (1) ◽  
pp. 691-739
Author(s):  
J. C. Kaiser ◽  
J. Hendricks ◽  
M. Righi ◽  
N. Riemer ◽  
R. A. Zaveri ◽  
...  

Abstract. We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)/chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealised marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HCl/Cl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC-MOSAIC show substantial differences in the fine particle size distributions (sizes ≲ 2 μm) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.


1986 ◽  
Vol 87 ◽  
Author(s):  
J. W. Vanderhoff ◽  
M. S. El-Aasser ◽  
D. M. Kornfeld ◽  
F. J. Micale ◽  
E. D. Sudol ◽  
...  

AbstractTwenty monodisperse polystyrene latexes were made by seeded emulsion polymerization in the MLR-SEP flight hardware on theSTS-3 and STS-4 flights of the Columbia and the STS-6, STS-7, and STS-11 flights of the Challenger. Two polymerizations were small-particle-size controls; the other eighteen were of large particle size. Of these, six failed: four on STS-4 owing to malfunction of the flight hardware; one on STS-6 owing to a broken wire; one on STS-11 owing to a broken stirrer shearpin. Nine monodisperse latexes of 4–30 μm size had narrower particle size distributions than the ground-based controls. The 10 μm STS-6 latex and the 30 μm STS-11 latexes were accepted by the National Bureau of Standards as Standard Reference Materials, the first products made in space for sale on earth. The polymerization rates in space were the same as on earth within experimental error. The flight polymerizations produced only negligible amounts of coagulum; the ground-based control polymerizations produced increasing amounts with increasing particle size, so that these controls were discontinued after the STS-7 experiments. These results confirmed the original rationale of the experiments that polymerization in space would give more uniform large-particlesize monodisperse latexes with less coagulum by: 1. the better uniformity of all 5 μm or larger flight latexes; 2. the more perfect sphericity of the 10 and 30 μm particles; 3. the smaller number of offsize larger particles; 3. the negligible amounts of coagulum; 4. the broadening of the particle size distribution and the formation of more larger offsize particles during the completion on earth of the polymerization of the partially converted STS-4 flight latexes.


2014 ◽  
Vol 14 (8) ◽  
pp. 4327-4348 ◽  
Author(s):  
D. C. S. Beddows ◽  
M. Dall'Osto ◽  
R. M. Harrison ◽  
M. Kulmala ◽  
A. Asmi ◽  
...  

Abstract. Cluster~analysis of particle number size distributions from~background sites across Europe~is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze.~The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected.~These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6–0.9 nm h−1. Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. ~While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.


2017 ◽  
Author(s):  
Youngmin Noh ◽  
Detlef Müller ◽  
Kyunghwa Lee ◽  
Kwanchul Kim ◽  
Kwonho Lee

Abstract. The linear particle depolarization ratios at 440, 675, 870, and 1020 nm were derived using data taken with AERONET sun/sky radiometer at Seoul (37.45° N, 126.95° E), Kongju (36.47° N, 127.14° E), Gosan (33.29° N, 126.16° E), and Osaka (34.65° N, 135.59° E). The results are compared to the linear particle depolarization ratio measured by lidar at 532 nm. The correlation coefficient R2 between the linear particle depolarization ratio derived by AERONET data at 1020 nm and the linear particle depolarization ratio measured with lidar at 532 nm is 0.90, 0.92, 0.79, and 0.89 at Seoul, Kongju, Gosan, and Osaka, respectively. A good correlation between the lidar-measured depolarization ratio at 532 nm and the one retrieved by AERONET at 870 nm. We find correlation coefficients R2 of 0.89, 0.92, 0.76, and 0.88 at Seoul, Kongju, Gosan, and Osaka, respectively. The correlation coefficient for the data at 675 nm is lower than the correlation coefficient at 870 and 1020 nm. We find correlation values of 0.81, 0.90, 0.64, and 0.81 at Seoul, Kongju, Gosan, and Osaka, respectively. The lowest correlation values are found for the AERONET-derived linear particle depolarization ratio at 440 nm. We find values of 0.38, 0.62, 0.26, and 0.28 at Seoul, Kongju, Gosan, and Osaka, respectively. The linear particle depolarization ratio can be used as a parameter to obtain insight into the variation of optical and microphysical properties of dust when it mixed with anthropogenic pollution particles. The single-scattering albedo decreases with increasing measurement wavelength for low linear particle depolarization ratios. In contrast, single-scattering albedo increases with decreasing wavelength for high linear particle depolarization ratios. The retrieved volume particle size distributions are dominated by the fine-mode fraction if linear particle depolarization ratios are less than 0.15 at 532 nm. The fine-mode fraction of the size distributions decreases and the coarse-mode fraction of the size distribution increases for increasing the linear particle depolarization ratio at 1020 nm. The dust ratio based on using the linear particle depolarization ratio derived from AERONET data is 0.12 to 0.17 lower than the coarse-mode fraction derived from the volume concentrations of particle size distributions in which case we can compute the coarse-mode fractions of dust.


2012 ◽  
Vol 12 (20) ◽  
pp. 10001-10013 ◽  
Author(s):  
M. R. Perrone ◽  
F. De Tomasi ◽  
A. Stohl ◽  
N. I. Kristiansen

Abstract. Volcanic aerosols resulting from the Eyjafjallajökull eruption were detected in south-eastern Italy from 20 to 22 April 2010, at a distance of approximately 4000 km from the volcano, and have been characterized by lidar, sun/sky photometer, and surface in-situ measurements. Volcanic particles added to the pre-existing aerosol load and measurement data allow quantifying the impact of volcanic particles on the aerosol vertical distribution, lidar ratios, the aerosol size distribution, and the ground-level particulate-matter concentrations. Lidar measurements reveal that backscatter coefficients by volcanic particles were about one order of magnitude smaller over south-eastern Italy than over Central Europe. Mean lidar ratios at 355 nm were equal to 64 ± 5 sr inside the volcanic aerosol layer and were characterized by smaller values (47 ± 2 sr) in the underlying layer on 20 April, 19:30 UTC. Lidar ratios and their dependence with the height reduced in the following days, mainly because of the variability of the volcanic particle contributions. Size distributions from sun/sky photometer measurements reveal the presence of volcanic particles with radii r > 0.5 μm on 21 April and that the contribution of coarse volcanic particles increased from 20 to 22 April. The aerosol fine mode fraction from sun/sky photometer measurements varied between values of 0.85 and 0.94 on 20 April and decreased to values between 0.25 and 0.82 on 22 April. Surface measurements of particle size distributions were in good accordance with column averaged particle size distributions from sun/sky photometer measurements. PM1/PM2.5 mass concentration ratios of 0.69, 0.66, and 0.60 on 20, 21, and 22 April, respectively, support the increase of super-micron particles at ground. Measurements from the Regional Air Quality Agency show that PM10 mass concentrations on 20, 21, and 22 April 2010 were enhanced in the entire Apulia Region. More specifically, PM10 mass concentrations have on average increased over Apulia Region 22%, 50%, and 28% on 20, 21, and 22 April, respectively, compared to values on 19 April. Finally, the comparison of measurement data with numerical simulations by the FLEXPART dispersion model demonstrates the ability of FLEXPART to model the advection of the volcanic ash over the 4000 km from the Eyjafjallajökull volcano to Southern Italy.


2003 ◽  
Vol 3 (2) ◽  
pp. 347-359 ◽  
Author(s):  
U. Uhrner ◽  
W. Birmili ◽  
F. Stratmann ◽  
M. Wilck ◽  
I. J. Ackermann ◽  
...  

Abstract. At Hohenpeissenberg (47° 48' N, 11° 07' E, 988 m asl), a rural site 200--300~m higher than the surrounding terrain, sulphuric acid concentrations, particle size distributions, and other trace gas concentrations were measured over a two and a half year period. Measured particle number concentrations and inferred particle surface area concentrations were compared with box-model simulations for 12 carefully selected data sets collected during the HAFEX experiment (Birmili et al., 2003). The 12 cases were selected after meteorological and aerosol dynamical criteria in order to justify the use of a box-model. The aerosol model included a binary sulphuric acid water nucleation scheme. Calculated nucleation rates were corrected with a factor to match measured and calculated particle number concentrations. For the investigated 12 data sets, the correction factors were smallest for measurements made under stable thermal stratification and low wind conditions, i.e. conditions that are frequently encountered during winter. Correction factors were largest for measurements made under strong convective conditions. Our comparison of measured and simulated particle size distributions suggests that the particle formation process maybe strongly influenced by mixing processes driven by thermal convection and/or wind sheer.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document