scholarly journals <i>D</i>-region ion–neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) – WACCM-SIC and WACCM-rSIC

2016 ◽  
Vol 9 (9) ◽  
pp. 3123-3136 ◽  
Author(s):  
Tamás Kovács ◽  
John M. C. Plane ◽  
Wuhu Feng ◽  
Tibor Nagy ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. This study presents a new ion–neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes ∼  50–90 km) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion–neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion–molecule reactions of 181 ion–molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3−, NO2−, O−, O2, OH−, O2−(H2O), O2−(H2O)2, O4−, CO3−, CO3−(H2O), CO4−, HCO3−, NO2−, NO3−, NO3−(H2O), NO3−(H2O)2, NO3−(HNO3), NO3−(HNO3)2, Cl−, ClO−), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion–molecule reactions that affect the partitioning of odd nitrogen (NOx), odd hydrogen (HOx) and O3 in the stratosphere and mesosphere.

2016 ◽  
Author(s):  
Tamás Kovács ◽  
John M. C. Plane ◽  
Wuhu Feng ◽  
Tibor Nagy ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. This study presents a new ion-neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D region (altitudes ~ 50–90 km) chemistry is based on the Sodankylä Ion and Neutral Chemistry (SIC) model, a 1-dimensional model containing 306 ion-neutral and ionrecombination reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the Simulation Error Minimization Connectivity Method (SEM-CM) to produce a reaction scheme of 181 ion-molecule reactions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3−, NO2−, O−, O2, OH−, O2−(H2O), O2−(H2O)2, O4−, CO3−, CO3−(H2O), CO4−, HCO3−, NO2−, NO3−, NO3−(H2O), NO3(H2O)2, NO3−(HNO3), NO3−(HNO3)2, Cl−, ClO−), which agree with the full SIC mechanism within a 5 % tolerance. Four 3D model simulations were then performed, using the impact of the January 2005 Solar Proton Event (SPE) on D region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM Method). Standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion-molecule reactions that affect the partitioning of odd nitrogen (NOx), odd hydrogen (HOx), and O3 in the stratosphere and mesosphere.


2005 ◽  
Vol 23 (5) ◽  
pp. 1575-1583 ◽  
Author(s):  
C.-F. Enell ◽  
A. Kero ◽  
E. Turunen ◽  
Th. Ulich ◽  
P. T. Verronen ◽  
...  

Abstract. The upper mesosphere and lower thermosphere, or ionospheric D region, is an atmospheric layer which is difficult to access experimentally. A useful method that also has a large potential for further studies is artificial heating of electrons by means of powerful radio transmitters. Here we estimate the effect of D-region heating for a few typical cases of high electron density – daylight, typical auroral electron precipitation, and a solar proton event – by coupling a model of RF electron heating to the Sodankylä Ion Chemistry (SIC) model. The predicted effects are among others an increase in the ratio of the concentration of negative ions to that of free electrons, and an increase in the absorption of cosmic noise as measured by riometers. For the model runs presented in this paper we have calculated the absorption for the frequency (38.2MHz) of the IRIS imaging riometer in Kilpisjärvi, Finland, as observing the ionosphere above the EISCAT Heater in Tromsø, Norway. The predicted enhancements of the absorption are 0.2–0.8dB, an effect which is clearly detectable. Keywords. Ionosphere (Active experiments; Ion chemistry and composition; Wave propagation)


2009 ◽  
Vol 27 (2) ◽  
pp. 577-589 ◽  
Author(s):  
A. Osepian ◽  
S. Kirkwood ◽  
P. Dalin

Abstract. A numerical model of D-region ion chemistry is used to study the influence of the ozone concentration in the mesosphere on ion-composition and electron density during solar proton events (SPE). We find a strong sensitivity in the lower part of the D-region, where negative ions play a major role in the ionization balance. We have chosen the strong SPE on 29–30 October 2003 when very intense proton fluxes with a hard energetic spectrum were observed. Deep penetration into the atmosphere by the proton fluxes and strong ionisation allows us to use measurements of electron density, made by the EISCAT 224 MHz radar, starting from as low as 55 km. We compare the electron density profiles with model results to determine which ozone concentration profiles are the most appropriate for mesospheric altitudes under SPE conditions. We show that, during daytime, an ozone profile corresponding to depletion by a factor of 2 compared to minimum model concentrations for quiet conditions (Rodrigo et al., 1986), is needed to give model electron density profiles consistent with observations. Simple incorporation of minor neutral constituent profiles (NO, O and O3) appropriate for SPE conditions into ion-chemistry models will allow more accurate modeling of electron and ion densities during such events, without the need to apply a complete chemical model calculating all neutral species.


2016 ◽  
Vol 8 (2) ◽  
pp. 954-975 ◽  
Author(s):  
P. T. Verronen ◽  
M. E. Andersson ◽  
D. R. Marsh ◽  
T. Kovács ◽  
J. M. C. Plane

2006 ◽  
Vol 24 (1) ◽  
pp. 187-202 ◽  
Author(s):  
P. T. Verronen ◽  
Th. Ulich ◽  
E. Turunen ◽  
C. J. Rodger

Abstract. The solar proton event of October 1989 and especially the sunset of 23 October is examined in this study of negative ion chemistry, which combines measurements of nitric oxide, electron density, and cosmic radio noise absorption with ion and neutral chemistry modelling. Model results show that the negative charge transition from electrons to negative ions during sunset occurs at altitudes below 80 km and is dependent on both ultraviolet and visible solar radiation. The ultraviolet effect is mostly due to rapid changes in atomic oxygen and O2(1Δg), while the decrease in NO3- photodetachment plays a minor role. The effect driven by visible wavelengths is due to changes in photodissociation of CO3- and the subsequent electron photodetachment from O-, and at higher altitudes is also due to a decrease in the photodetachment of O2-. The relative sizes of the ultraviolet and visible effects vary with altitude, with the visible effects increasing in importance at higher altitudes, and they are also controlled by the nitric oxide concentration. These modelling results are in good agreement with EISCAT incoherent scatter radar and Kilpisjärvi riometer measurements.


2020 ◽  
Author(s):  
Niilo Kalakoski ◽  
Pekka T. Verronen ◽  
Annika Seppälä ◽  
Monika E. Szeląg ◽  
Antti Kero ◽  
...  

Abstract. Atmospheric effects of solar proton events (SPE) have been studied for decades, because their drastic impact can be used to test our understanding of upper stratospheric and mesospheric chemistry in the polar cap regions. For example, SPEs cause production of odd hydrogen and odd nitrogen, which leads to depletion of ozone in catalytic reactions, such that the effects are easily observed from satellites during the largest events. Until recently, the complexity of the ion chemistry in the lower ionosphere (i.e. in the D region) has restricted global models to simplified parameterizations of chemical impacts induced by energetic particle precipitation (EPP). Because of this restriction, global models have been unable to correctly reproduce some important effects, such as the increase of mesospheric HNO3 or the changes in chlorine species. Here we use simulations from the WACCM-D model, a variant of the Whole Atmosphere Community Climate Model, to study the statistical response of the atmosphere to the 66 largest SPEs that occurred in years 1989–2012. Our model includes a set of D-region ion chemistry, designed for a detailed representation of the atmospheric effects of SPEs and EPP in general. We use superposed epoch analysis to study changes in O3, HOx (OH + HO2), Clx (Cl + ClO), HNO3, NOx (NO + NO2) and H2O. Compared to the standard WACCM which uses an ion chemistry parameterization, WACCM-D produces a larger response in O3 and NOx, weaker response in HOx and introduces changes in HNO3 and Clx. These differences between WACCM and WACCM-D highlight the importance of including ion chemistry reactions in models used to study EPP.


2021 ◽  
Author(s):  
Niilo Kalakoski ◽  
Pekka T. Verronen ◽  
Annika Seppälä ◽  
Monika E. Szeląg ◽  
Antti Kero ◽  
...  

&lt;p&gt;Atmospheric effects of solar proton events (SPEs) have been studied for decades, because their drastic impact can be used to test our understanding of upper stratospheric and mesospheric chemistry in the polar cap regions. For example, odd hydrogen and odd nitrogen are produced during SPEs, which leads to depletion of ozone in catalytic reactions, such that the effects are easily observed from satellites during the strongest events. Until recently, the complexity of the ion chemistry in the lower ionosphere (i.e., in the D region) has restricted global models to simplified parameterizations of chemical impacts induced by energetic particle precipitation (EPP). Because of this restriction, global models have been unable to correctly reproduce some important effects, such as the increase in mesospheric HNO&lt;sub&gt;3&lt;/sub&gt; or the changes in chlorine species. Here we use simulations from the WACCM-D model, a variant of the Whole Atmosphere Community Climate Model, to study the statistical response of the atmosphere to the 66 strongest SPEs which occurred in the years 1989&amp;#8211;2012. Our model includes a set of D-region ion chemistry, designed for a detailed representation of the atmospheric effects of SPEs and EPP in general. We use superposed epoch analysis to study changes in O&lt;sub&gt;3&lt;/sub&gt;, HO&lt;sub&gt;x&lt;/sub&gt; (OH + HO&lt;sub&gt;2&lt;/sub&gt;), Cl&lt;sub&gt;x&lt;/sub&gt; (Cl + ClO), HNO&lt;sub&gt;3&lt;/sub&gt;, NO&lt;sub&gt;x&lt;/sub&gt; (NO + NO&lt;sub&gt;2&lt;/sub&gt;) and H&lt;sub&gt;2&lt;/sub&gt;O. Compared to the standard WACCM which uses an ion chemistry parameterization, WACCM-D produces a larger response in O&lt;sub&gt;3&lt;/sub&gt; and NO&lt;sub&gt;x&lt;/sub&gt; and a weaker response in HO&lt;sub&gt;x&lt;/sub&gt; and introduces changes in HNO&lt;sub&gt;3&lt;/sub&gt; and Cl&lt;sub&gt;x&lt;/sub&gt;. These differences between WACCM and WACCM-D highlight the importance of including ion chemistry reactions in models used to study EPP.&amp;#160;&lt;/p&gt;


2020 ◽  
Vol 20 (14) ◽  
pp. 8923-8938 ◽  
Author(s):  
Niilo Kalakoski ◽  
Pekka T. Verronen ◽  
Annika Seppälä ◽  
Monika E. Szeląg ◽  
Antti Kero ◽  
...  

Abstract. Atmospheric effects of solar proton events (SPEs) have been studied for decades, because their drastic impact can be used to test our understanding of upper stratospheric and mesospheric chemistry in the polar cap regions. For example, odd hydrogen and odd nitrogen are produced during SPEs, which leads to depletion of ozone in catalytic reactions, such that the effects are easily observed from satellites during the strongest events. Until recently, the complexity of the ion chemistry in the lower ionosphere (i.e., in the D region) has restricted global models to simplified parameterizations of chemical impacts induced by energetic particle precipitation (EPP). Because of this restriction, global models have been unable to correctly reproduce some important effects, such as the increase in mesospheric HNO3 or the changes in chlorine species. Here we use simulations from the WACCM-D model, a variant of the Whole Atmosphere Community Climate Model, to study the statistical response of the atmosphere to the 66 strongest SPEs which occurred in the years 1989–2012. Our model includes a set of D-region ion chemistry, designed for a detailed representation of the atmospheric effects of SPEs and EPP in general. We use superposed epoch analysis to study changes in O3, HOx (OH + HO2), Clx (Cl + ClO), HNO3, NOx (NO + NO2) and H2O. Compared to the standard WACCM which uses an ion chemistry parameterization, WACCM-D produces a larger response in O3 and NOx and a weaker response in HOx and introduces changes in HNO3 and Clx. These differences between WACCM and WACCM-D highlight the importance of including ion chemistry reactions in models used to study EPP.


1996 ◽  
Vol 101 (D10) ◽  
pp. 15079-15097 ◽  
Author(s):  
D. J. Erickson ◽  
P. J. Rasch ◽  
P. P. Tans ◽  
P. Friedlingstein ◽  
P. Ciais ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document