scholarly journals Reducing scale dependence in TOPMODEL using a dimensionless topographic index

2009 ◽  
Vol 13 (12) ◽  
pp. 2399-2412 ◽  
Author(s):  
A. Ducharne

Abstract. This paper stems from the fact that the topographic index used in TOPMODEL is not dimensionless. In each pixel i in a catchment, it is defined as xi=ln(ai/Si), where ai is the specific contributing area per unit contour length and Si is the topographic slope. In the SI unit system, ai/Si is in meters, and the unit of xi is problematic. We propose a simple solution in the widespread cases where the topographic index is computed from a regular raster digital elevation model (DEM). The pixel length C being constant, we can define a dimensionless topographic index yi=xi-lnC. Reformulating TOPMODEL equations to use yi instead of xi helps giving the units of all their terms and emphasizes the scale dependence of these equations via the explicit use of C outside from the topographic index, in what can be defined as the transmissivity at saturation per unit contour length T0/C. The term lnC defines the numerical effect of DEM resolution, which contributes to shift the spatial mean x of the classical topographic index when the DEM cell size C varies. A key result is that both the spatial mean y of the dimensionless index and T0/C are much more stable with respect to DEM resolution than their counterparts x and T0 in the classical framework. This shows the importance of the numerical effect in the dependence of the classical topographic index to DEM resolution, and reduces the need to recalibrate TOPMODEL when changing DEM resolution.

2009 ◽  
Vol 6 (2) ◽  
pp. 1621-1649 ◽  
Author(s):  
A. Ducharne

Abstract. This paper stems from the fact that the topographic index used in TOPMODEL is not dimensionless. In each pixel i in a catchment, it is defined as xi=ln (ai /Si), where ai is the specific contributing area per unit contour length and Si is the topographic slope. In the SI unit system, ai /Si is in meters, and the unit of xi is problematic. Even if all the equations in TOPMODEL are homogeneous, it is confusing to use the logarithm of a non-dimensionless quantity as an index, and we propose a simple solution to this issue in the nowadays widespread cases where the topographic index is computed from a regular raster digital elevation model (DEM). The pixel length C being constant, we can define a dimensionless topographic index yi=xi−ln C. Reformulating TOPMODEL's equations to use yi instead of xi helps giving the units of all the terms in TOPMODEL's equations. Another advantage is to raise awareness about the scale dependence of these equations via the explicit use of the DEM cell size C outside from the topographic index, in what what can be defined as the transmissivity at saturation per unit contour length T0/C. We eventually demonstrate, based on various examples from the literature, that both T0/C and the spatial mean y of the proposed dimensionless topographic index are very stable with respect to DEM resolution. This markedly reduces the recalibration necessity when changing DEM resolution, thus offering an efficient rescaling framework.


2019 ◽  
Vol 9 (18) ◽  
pp. 3690 ◽  
Author(s):  
Daeryong Park ◽  
Huan-Jung Fan ◽  
Jun-Jie Zhu ◽  
Sang-Eun Oh ◽  
Myoung-Jin Um ◽  
...  

This study analyzed the result of parameter optimization using the digital elevation model (DEM) resolution in the TOPography-based hydrological MODEL (TOPMODEL). Also, this study investigated the sensitivity of the TOPMODEL efficiency by applying the varying resolution of the DEM grid cell size. This work applied TOPMODEL to two mountainous watersheds in South Korea: the Dongkok watershed in the Wicheon river basin and the Ieemokjung watershed in the Pyeongchang river basin. The DEM grid cell sizes were 5, 10, 20, 40, 80, 160, and 300 m. The effect of DEM grid cell size on the runoff was investigated by using the DEM grid cell size resolution to optimize the parameter sets. As the DEM grid cell size increased, the estimated peak discharge was found to increase based on different parameter sets. In addition, this study investigated the DEM grid cell size that was most reliable for use in runoff simulations with various parameter sets in the experimental watersheds. The results demonstrated that the TOPMODEL efficiencies in both the Dongkok and Ieemokjung watersheds rarely changed up to a DEM grid-size resolution of about 40 m, but the TOPMODEL efficiencies changed with the coarse resolution as the parameter sets were changed. This study is important for understanding and quantifying the modeling behaviors of TOPMODEL under the influence of DEM resolution based on different parameter sets.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 146-155 ◽  
Author(s):  
Jing Xu ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Xiaofan Liu

The parameter calibration of TOPMODEL is influenced by digital elevation model (DEM) resolution because of the utilization of scale-dependent topographic index representing hydrologic similarity. The downscaled DEM from the coarse-resolution DEM and the resolution factor are applied to remove the DEM scale effects on the upslope area. Meanwhile, a fractal method is introduced as an approach to account for the effect of DEM resolution on slope. A significant improvement on the estimation of slope directly from the coarse-resolution data is made by applying fractal parameters that are computed from the standard deviation of elevation and the topographic complexity index in a 3 × 3 window of the DEM to account for local variability in the surface. The method to downscale the topographic index distribution is then coupled with the TOPMODEL to develop the scale-invariant TOPMODEL and is applied to perform streamflow simulation in the context of different DEM resolutions in the Zishui catchment. Results show that the calculated hydrograph based on the DEM data at 900 and 1,800 m resolution is consistent with that based on the DEM data at 100 m resolution when the same parameter set is used.


2014 ◽  
Vol 16 (6) ◽  
pp. 1343-1358 ◽  
Author(s):  
L. Cui ◽  
Y. P. Li ◽  
G. H. Huang ◽  
Y. Huang

Topography plays a critical role in controlling water dispersion and soil movement in hydrologic modeling for water resources management with raster-based digital elevation model (DEM). This study aims to model effects of DEM resolution on runoff simulation through coupling fuzzy analysis technique with a topography based rainfall–runoff model (TOPMODEL). Different levels of DEM grid sizes between 30 m and 200 m are examined, and the results indicate that 30 m DEM resolution is the best for all catchments. Results demonstrate that the DEM resolution could have significant influence on the TOPMODEL rainfall–runoff simulation. Fuzzy analysis technique is used to further examine the uncertain DEM resolution based on considering Nash, sum of squared error, and sum of absolute error values of TOPMODEL. The developed model is calibrated and validated against observed flow during the period 2010–2012, and generally performed acceptably for model Nash–Sutcliffe value. The proposed method is useful for studying hydrological processes of watershed associated with topography uncertainty and providing support for identifying proper water resources management strategy.


2018 ◽  
Vol 50 (1) ◽  
pp. 379-392 ◽  
Author(s):  
Andrea Petroselli ◽  
Matej Vojtek ◽  
Jana Vojteková

Abstract Flood mapping is a crucial element of flood risk management. In small and ungauged basins, empirical and regionalization approaches are often adopted to estimate the design hydrographs that represent input data in hydraulic models. In this study, two basins were selected in Slovakia and different methodologies for flood mapping were tested highlighting the role of digital elevation model (DEM) resolution, hydrologic modeling and the hydraulic model. Two DEM resolutions (2 m and 20 m) were adopted. Two hydrologic approaches were employed: a regional formula for peak flow estimation and the EBA4SUB model. Two hydraulic approaches (HEC-RAS and FLO-2D) were selected. Different combinations of hydrologic and hydraulic modeling were tested, under different spatial resolutions. Regarding the DEM resolution, results showed its fundamental importance in the low relief area while its effect was secondary in the moderate relief area. Regarding the hydrologic modeling, results confirmed that it affects the results of the flood areas in the same way independently of DEM resolution and that when using event-based models, the hydrograph shape determination is fundamental. Regarding the hydraulic modeling, this was the step where major differences in the flood area estimation were found.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 135-145 ◽  
Author(s):  
Bin Yong ◽  
Li-Liang Ren ◽  
Yang Hong ◽  
Jonathan J. Gourley ◽  
Xi Chen ◽  
...  

The topographic wetness index (TWI), frequently used in approximately characterizing the spatial distribution of soil moisture and surface saturation within a watershed, has been widely applied in topography-related geographical processes and hydrological models. However, it is still questionable whether the current algorithms of TWI can adequately model the spatial distribution of topographic characteristics. Based upon the widely-used multiple flow direction approach (MFD), a novel MFD algorithm (NMFD) is proposed for improving the TWI derivation using a Digital Elevation Model (DEM) in this study. Compared with MFD, NMFD improves the mathematical equations of the contributing area and more precisely calculates the effective contour length. Additionally, a varying exponent strategy is adopted to dynamically determine the downslope flow-partition exponent. Finally, a flow-direction tracking method is employed to address grid cells in flat terrain. The NMFD algorithm is first applied to a catchment located upstream of the Hanjiang River in China to demonstrate its accuracy and improvements. Then NMFD is quantitatively evaluated by using four types of artificial mathematical surfaces. The results indicate that the error generated by NMFD is generally lower than that computed by MFD, and NMFD is able to more accurately represent the hydrological similarity of watersheds.


2000 ◽  
Vol 4 (2) ◽  
pp. 225-237 ◽  
Author(s):  
C. Higy ◽  
A. Musy

Abstract. It is widely recognised that topography plays an important role in the generation of runoff. The scale of a digital elevation model has been found to have some impacts on the results of hydrological modelling in several studies. In particular it has been shown that the representation of the statistical distribution of the topographic index used by TOPMODEL is sensitive to the scale of the digital terrain model. The objectives of this study are to develop an analysis of the topography and scale effects for the Haute-Mentue catchment and to test the role of different spatial resolution on parameter calibration. The major result is that the spatial scale is important for the parameter values, but not determinant for the modelling results if a pertinent methodology is adopted for the determination of digital watershed representation. Keywords: digital elevation model, topographic index, scale problems, TOPMODEL


Sign in / Sign up

Export Citation Format

Share Document