scholarly journals Flood frequency analysis using mean daily flows vs. instantaneous peak flows

2021 ◽  
Author(s):  
Anne Bartens ◽  
Uwe Haberlandt

Abstract. In many cases flood frequency analysis needs to be carried out on mean daily flow (MDF) series without any available information on the instantaneous peak flow (IPF). We analyze the error of using MDFs instead of IPFs for flood quantile estimation on a German dataset and assess spatial patterns and factors that influence the deviation of MDF floods from their IPF counterparts. The main dependence could be found for catchment area but also gauge elevation appeared to have some influence. Based on the findings we propose simple linear models to correct both MDF flood peaks of individual flood events and overall MDF flood statistics. Key predictor in the models is the event-based ratio of flood peak and flood volume obtained directly from the daily flow records. This correction approach requires a minimum of data input, is easily applied, valid for the entire study area and successfully estimates IPF peaks and flood statistics. The models perform particularly well in smaller catchments, where other IPF estimation methods fall short. Still, the limit of the approach is reached for catchment sizes below 100 km2, where the hydrograph information from the daily series is no longer capable of approximating instantaneous flood dynamics.

2018 ◽  
Vol 32 (13) ◽  
pp. 4239-4252 ◽  
Author(s):  
Jianzhu Li ◽  
Yuming Lei ◽  
Senming Tan ◽  
Colin D. Bell ◽  
Bernard A. Engel ◽  
...  

2021 ◽  
Author(s):  
Mohamad Haytham Klaho ◽  
Hamid R. Safavi ◽  
Mohamad H. Golmohammadi ◽  
Maamoun Alkntar

Abstract Historically, severe floods have caused great human and financial losses. Therefore, the flood frequency analysis based on the flood multiple variables including flood peak, volume and duration poses more motivation for hydrologists to study. In this paper, the bivariate and trivariate flood frequency analysis and modeling using Archimedean copula functions is focused. For this purpose, the annual flood data over a 55-year historical period recorded at the Dez Dam hydrometric station were used. The results showed that based on goodness of fit criteria, the Frank function built upon the couple of the flood peak-volume and the couple of the flood peak-duration as well as the Clayton function built upon the flood volume-duration were identified to be the best copula families to be adopted. The trivariate analysis was conducted and the Clayton family was chosen as the best copula function. Thereafter, the common and conditional cumulative probability distribution functions were built and analyzed to determine the periodic "and", "or" and "conditional" bivariate and trivariate flood return periods. The results suggest that the bivariate conditional return period obtained for short-term periods is more reliable than the trivariate conditional return period. Additionally, the trivariate conditional return period calculated for long-term periods is more reliable than the bivariate conditional return period.


2019 ◽  
Vol 19 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Valeriya Filipova ◽  
Deborah Lawrence ◽  
Thomas Skaugen

Abstract. The estimation of extreme floods is associated with high uncertainty, in part due to the limited length of streamflow records. Traditionally, statistical flood frequency analysis and an event-based model (PQRUT) using a single design storm have been applied in Norway. We here propose a stochastic PQRUT model, as an extension of the standard application of the event-based PQRUT model, by considering different combinations of initial conditions, rainfall and snowmelt, from which a distribution of flood peaks can be constructed. The stochastic PQRUT was applied for 20 small- and medium-sized catchments in Norway and the results give good fits to observed peak-over-threshold (POT) series. A sensitivity analysis of the method indicates (a) that the soil saturation level is less important than the rainfall input and the parameters of the PQRUT model for flood peaks with return periods higher than 100 years and (b) that excluding the snow routine can change the seasonality of the flood peaks. Estimates for the 100- and 1000-year return level based on the stochastic PQRUT model are compared with results for (a) statistical frequency analysis and (b) a standard implementation of the event-based PQRUT method. The differences in flood estimates between the stochastic PQRUT and the statistical flood frequency analysis are within 50 % in most catchments. However, the differences between the stochastic PQRUT and the standard implementation of the PQRUT model are much higher, especially in catchments with a snowmelt flood regime.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 475 ◽  
Author(s):  
Ting Zhou ◽  
Zhiyong Liu ◽  
Juliang Jin ◽  
Hongxiang Hu

Flood frequency analysis plays a fundamental role in dam planning, reservoir operation, and risk assessment. However, conventional univariate flood frequency analysis carried out by flood peak inflow or volume does not account for the dependence between flood properties. In this paper, we proposed an integrated approach to estimate reservoir risk by combining the copula-based bivariate flood frequency (peak and volume) and reservoir routing. Through investigating the chain reaction of “flood frequency—reservoir operation-flood risk”, this paper demonstrated how to simulate flood hydrographs using different frequency definitions (copula “Or” and “And” scenario), and how these definitions affect flood risks. The approach was applied to the Meishan reservoir in central China. A set of flood hydrographs with 0.01 frequency under copula “Or” and “And” definitions were constructed, respectively. Upstream and downstream flood risks incorporating reservoir operation were calculated for each scenario. Comparisons between flood risks from univariate and bivariate flood frequency analysis showed that bivariate flood frequency analysis produced less diversity in the results, and thus the results are more reliable in risk assessment. More importantly, the peak-volume combinations in a bivariate approach can be adjusted according to certain prediction accuracy, providing a flexible estimation of real-time flood risk under different prediction accuracies and safety requirements.


2011 ◽  
Vol 8 (6) ◽  
pp. 9757-9796 ◽  
Author(s):  
E. Goodarzi ◽  
M. Mirzaei ◽  
L. T. Shui ◽  
M. Ziaei

Abstract. There is a growing tendency to assess the safety levels of existing dams based on risk and uncertainty analysis using mathematical and statistical methods. This research presents the application of risk and uncertainty analysis to dam overtopping based on univariate and bivariate flood frequency analyses by applying Gumbel logistic distribution for the Doroudzan earth-fill dam in south of Iran. The bivariate frequency analysis resulted in six inflow hydrographs with a joint return period of 100-yr. The overtopping risks were computed for all of those hydrographs considering quantile of flood peak discharge (in particular 100-yr), initial depth of water in the reservoir, and discharge coefficient of spillway as uncertain variables. The maximum height of the water, as most important factor in the overtopping analysis, was evaluated using reservoir routing and the Monte Carlo and Latin hypercube techniques were applied for uncertainty analysis. Finally, the achieved results using both univariate and bivariate frequency analysis have been compared to show the significance of bivariate analyses on dam overtopping.


Sign in / Sign up

Export Citation Format

Share Document