scholarly journals Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations

2021 ◽  
Vol 25 (5) ◽  
pp. 2445-2458
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Rich Ellis ◽  
Ewan Pinnington ◽  
...  

Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological, and meteorological applications. In recent years, the availability of wide-area soil moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the Joint UK Land Environment Simulator (JULES) land surface model using field-scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way, we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way improves the soil moisture predictions of a land surface model at 16 UK sites, leading to the potential for better flood, drought, and climate projections.

2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Rich Ellis ◽  
Ewan Pinnington ◽  
...  

Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in-situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface models, leading to the potential for better flood, drought and climate projections.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2021 ◽  
Author(s):  
Nadia Ouaadi ◽  
Lionel Jarlan ◽  
Saïd Khabba ◽  
Jamal Ezzahar ◽  
Olivier Merlin

<p>Irrigation is the largest consumer of water in the world, with more than 70% of the world's fresh water dedicated to agriculture. In this context, we developed and evaluated a new method to predict daily to seasonal irrigation timing and amounts at the field scale using surface soil moisture (SSM) data assimilated into a simple  land surface model through a particle filter technique. The method is first tested using in situ SSM before using SSM products retrieved from Sentinel-1. Data collected on different wheat fields grown  in Morocco, for both flood and drip irrigation techniques, are used to assess the performance of the proposed method. With in situ data, the results are good. Seasonal amounts are retrieved with R > 0.98, RMSE <42 mm and bias<2 mm. Likewise, a good agreement is observed at the daily scale for flood irrigation where more than 70% of the irrigation events are detected with a time difference from actual irrigation events shorter than 4 days, when assimilating SSM observation every 6 days to mimics Sentinel-1 revisit time. Over the drip irrigated fields, the statistical metrics are R = 0.70, RMSE =28.5 mm and bias= -0.24 mm for irrigation amounts cumulated over 15 days. The approach is then evaluated using SSM products derived from Sentinel-1 data; statistical metrics are R= 0.64, RMSE= 28.78 mm and bias = 1.99 mm for irrigation amounts cumulated over 15 days. In addition to irrigated fields, the applicationof the developed methodover rainfed fieldsdid not detect any irrigation. This study opens perspectives for the regional retrieval of irrigation amounts and timing at the field scale and for mapping irrigated/non irrigated areas.</p>


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Ewan Pinnington ◽  
Richard Ellis ◽  
Eleanor Blyth ◽  
Simon Dadson ◽  
...  

<p>Soil moisture predictions are increasingly important in hydrological, ecological and agricultural applications. In recent years the availability of wide-area assessments of current and future soil-moisture states has grown, yet few studies have combined model-based assessments with observations beyond the point scale. Here we use the JULES land surface model together with COSMOS-UK data to evaluate the extent to which data assimilation can improve predictions of soil moisture across the United Kingdom.</p><p>COSMOS-UK is a network of soil moisture sensors run by UKCEH. The network provides soil moisture measurements at around 50 sites throughout the UK using innovative Cosmic Ray Neutron Sensors (CRNS). Half hourly measurements of the meteorological variables that the Joint UK Land Environment Simulator (JULES) requires as driving data are also recorded at COSMOS-UK sites, allowing us to run JULES at observation locations. This provides a unique opportunity to compare soil moisture outputs from JULES with CRNS observations; these measurements have a footprint of up to 12 ha (approx 30 acres) and are therefore better scale matched with JULES outputs than those from point sensors.</p><p>We have used the Land Variational Ensemble Data Assimilation Framework (LaVEnDAR) to combine soil moisture estimates from JULES with daily CRNS observations from one year at a number of COSMOS-UK sites. We show that this results in improved soil moisture predictions from JULES over several years. This has been achieved by optimising parameters in the pedo-transfer function used to derive JULES soil physics parameters from soil texture information. Using data assimilation with LaVEnDAR in this way allows us to explore the relationships between soil moisture estimates, soil physics parameters and soil texture, as well as improving the agreement between JULES model outputs and observations.</p>


2021 ◽  
Vol 25 (3) ◽  
pp. 1617-1641
Author(s):  
Ewan Pinnington ◽  
Javier Amezcua ◽  
Elizabeth Cooper ◽  
Simon Dadson ◽  
Rich Ellis ◽  
...  

Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land surface models is unclear because gridded databases of soil texture represent an area average. We present a novel approach for calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from the Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration procedures, data assimilation always takes into account the relative uncertainties given to both model and observed estimates to find a maximum likelihood estimate. After performing the calibration procedure, we find improved estimates of soil moisture and heat flux for the Joint UK Land Environment Simulator (JULES) land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture monitoring network (COSMOS-UK) and three flux tower sites. The spatial resolution of the COSMOS probes is much more representative of the 1 km model grid than traditional point-based soil moisture sensors. For 11 cosmic-ray neutron soil moisture probes located across the modelled domain, we find an average 22 % reduction in root mean squared error, a 16 % reduction in unbiased root mean squared error and a 16 % increase in correlation after using data assimilation techniques to retrieve new pedotransfer function parameters.


2020 ◽  
Author(s):  
Ewan Pinnington ◽  
Javier Amezcua ◽  
Elizabeth Cooper ◽  
Simon Dadson ◽  
Rich Ellis ◽  
...  

Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land surface models is unclear, because gridded databases of soil texture represent an area average. We present a novel approach for calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from the Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration procedures data assimilation always takes into account the relative uncertainties given to both model and observed estimates to find a maximum likelihood estimate. After performing the calibration procedure we find improved estimates of soil moisture for the JULES land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture monitoring network (COSMOS-UK). The spatial resolution of these COSMOS probes is much more representative of the 1 km model grid than traditional point based soil moisture sensors. For 11 cosmic-ray neutron soil moisture probes located across the modelled domain we find an average 22 % reduction in root-mean squared error, a 16 % reduction in unbiased root-mean squared error and a 16 % increase in correlation after using data assimilation techniques to retrieve new pedotransfer function parameters.


2021 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Richard Ellis ◽  
Ewan Pinnington ◽  
...  

<p>Accurate soil moisture predictions from land surface models are important in hydrological, ecological and agricultural applications. Despite increasing availability of wide area soil moisture measurements, few studies have combined soil moisture predictions from models with in-situ observations beyond the point scale. This work uses the LAVENDAR data assimilation framework to markedly improve soil moisture estimates from the JULES land surface model using field scale Cosmic Ray Neutron sensor observations from the UKCEH COSMOS-UK network. Rather than directly updating modelled soil moisture estimates towards measured values, we optimize constants in the underlying pedotransfer functions (PTF) which relate soil texture to soil hydraulics parameters. In this way we generate a single set of newly calibrated PTFs based on field scale observations from a number of UK sites with different soil types. We demonstrate that calibrating PTFs in this way can improve the performance of JULES. Further, we suggest that calibrating PTFs for the soils on which they are to be used and at the scales at which land surface models are applied (rather than on small-scale soil samples) will ultimately improve the performance of land surface models, potentially leading to improvements in flood, drought and climate projections.</p>


2019 ◽  
Vol 11 (11) ◽  
pp. 1334 ◽  
Author(s):  
Nemesio Rodríguez-Fernández ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised-Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if local biases can remain. Experiments performing joint data assimilation (DA) of NNSM, 2 m air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April–September, while NNSM alone has a significant positive effect in July–September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 h lead time.


2021 ◽  
Author(s):  
Vibin Jose ◽  
Anantharaman Chandrasekar

Abstract Land Surface Models (LSMs) are typically forced with observed precipitation and surface meteorology and hence the soil moisture estimates obtained from LSM do not reflect the contribution of irrigation to the soil moisture estimates. However, the satellite retrievals of soil moisture estimates do register the signature of the irrigation effects. It is suggested that the soil moisture estimates obtained from LSM may reflect the role of irrigation if they are assimilated with soil moisture estimated from satellites. The present study evaluates the improvement of soil moisture estimates obtained from Noah LSM by ingesting them with the satellite derived Advanced Scatterometer (ASCAT) soil moisture retrievals over the Indian domain for the year 2012. The above ingesting of soil moisture estimates is performed using the Land Information System (LIS). The improved soil moisture estimates are validated with the in-situ India Meteorological Department (IMD) soil moisture observations and also with the high-resolution Indian Monsoon Data Assimilation and Analysis (IMDAA) regional reanalysis data. The percentage of grid points over the Indian domain where the improvement parameter shows positive values are 59.14% (winter), 69.17% (pre-monsoon), 43.59% (monsoon), and 77.53% (post-monsoon). Furthermore, the forecast impact parameter also indicates the positive impact of data assimilation. Also, 12 of the 22 stations show reduced RMSE soil moisture error after data assimilation is performed while only 6 of the 22 stations show higher correlation coefficient in soil moisture without data assimilation, when validated with the in-situ IMD soil moisture observations. The study has also evaluated the irrigation impact of ASCAT in the assimilated soil moisture using triple collocation (TC) method. For the TC analysis, the model based Global Land Data Assimilation System (GLDAS)Catchment Land Surface Model (CLSM), and MERRA (Modern-Era Retrospective analysis for Research and Applications) Land data set together with soil moisture model outputs with and without ASCAT assimilation are used to calculate the error and correlation coefficient of each of the two set of triplets. The results of the TC analysis further conclusively shows the positive impact of irrigation effects in the ASCAT assimilated soil moisture model output.


Sign in / Sign up

Export Citation Format

Share Document