scholarly journals Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models

2021 ◽  
Vol 25 (10) ◽  
pp. 5517-5534
Author(s):  
Thomas Lees ◽  
Marcus Buechel ◽  
Bailey Anderson ◽  
Louise Slater ◽  
Steven Reece ◽  
...  

Abstract. Long short-term memory (LSTM) models are recurrent neural networks from the field of deep learning (DL) which have shown promise for time series modelling, especially in conditions when data are abundant. Previous studies have demonstrated the applicability of LSTM-based models for rainfall–runoff modelling; however, LSTMs have not been tested on catchments in Great Britain (GB). Moreover, opportunities exist to use spatial and seasonal patterns in model performances to improve our understanding of hydrological processes and to examine the advantages and disadvantages of LSTM-based models for hydrological simulation. By training two LSTM architectures across a large sample of 669 catchments in GB, we demonstrate that the LSTM and the Entity Aware LSTM (EA LSTM) models simulate discharge with median Nash–Sutcliffe efficiency (NSE) scores of 0.88 and 0.86 respectively. We find that the LSTM-based models outperform a suite of benchmark conceptual models, suggesting an opportunity to use additional data to refine conceptual models. In summary, the LSTM-based models show the largest performance improvements in the north-east of Scotland and in south-east of England. The south-east of England remained difficult to model, however, in part due to the inability of the LSTMs configured in this study to learn groundwater processes, human abstractions and complex percolation properties from the hydro-meteorological variables typically employed for hydrological modelling.

2019 ◽  
Author(s):  
WEIHONG LIAO ◽  
ZHAOKAI YIN ◽  
RUOJIA WANG ◽  
XIAOHUI LEI

2021 ◽  
Author(s):  
Pai-Feng Teng ◽  
John Nieber

<p>Flooding is one of the most financially devastating natural hazards in the world. Studying storage-discharge relations can have the potential to improve existing flood forecasting systems, which are based on rainfall-runoff models. This presentation will assess the non-linear relation between daily water storage (ΔS) and discharge (Q) simulated by physical-based hydrological models at the Rum River Watershed, a HUC8 watershed in Minnesota, between 1995-2015, by training Long Short-Term Memory (LSTM) networks and other machine learning (ML) algorithms. Currently, linear regression models do not adequately represent the relationship between the simulated total ΔS and total Q at the HUC-8 watershed (R<sup>2</sup> = 0.3667). Since ML algorithms have been used for predicting the outputs that represent arbitrary non-linear functions between predictors and predictands, they will be used for improving the accuracy of the non-linear relation of the storage-discharge dynamics. This research will mainly use LSTM networks, the time-series deep learning neural network that has already been used for predicting rainfall-runoff relations. The LSTM network will be trained to evaluate the storage-discharge relationship by comparing two sets of non-linear hydrological variables simulated by the semi-distributed Hydrological Simulated Program-Fortran (HSPF): the relationship between the simulated discharges and input hydrological variables at selected HUC-8 watersheds, including air temperatures, cloud covers, dew points, potential evapotranspiration, precipitations, solar radiations, wind speeds, and total water storage, and the dynamics between simulated discharge and input variables that do not include the total water storage. The result of this research will lay the foundation for assessing the accuracy of downscaled storage-discharge dynamics by applying similar methods to evaluate the storage-discharge dynamics at small-scaled, HUC-12 watersheds. Furthermore, its results have the potentials for us to evaluate whether downscaling of storage-discharge dynamics at the HUC-12 watershed can improve the accuracy of predicting discharge by comparing the result from the HUC-8 and the HUC-12 watersheds.</p>


2021 ◽  
Author(s):  
Thomas Lees ◽  
Marcus Buechel ◽  
Bailey Anderson ◽  
Louise Slater ◽  
Steven Reece ◽  
...  

Abstract. Long short-term memory models (LSTMs) are recurrent neural networks from the emerging field of Deep Learning (DL), which have shown recent promise when predicting time-series especially when data are abundant. Rainfall-runoff modelling presents a challenge, yet accurate hydrological models are vital for flood forecasting, hazard impact assessment, and to assess the potential effects of climate change on floods and water resources. In this study, we compare the performance of two DL-based models, a LSTM and an Entity Aware LSTM (EA LSTM). The DL models were trained using a newly published data set, CAMELS-GB, for a sample of 518 catchments across Great Britain. To identify spatial and seasonal patterns in model performance, we compare the DL models against benchmark outputs from four lumped conceptual models recently configured for rainfall-runoff modelling in Great Britain. Our findings show that the LSTM models simulate discharge with consistently high model performance scores, including in catchments typically considered difficult to model. The LSTM achieves a mean catchment NSE of 0.88 (0.86 for the EALSTM), which represents a performance improvement of 10 %–16 % compared with the benchmark conceptual models. Seasonal and spatial patterns indicate that the largest performance improvement relative to the benchmark is in the drier summer months and in drier catchments in the South East of England. By comparing LSTMs with conceptual models, we diagnose possible reasons for their different performance. We suggest that LSTMs offer useful predictive capability for rainfall-runoff modelling in Great Britain and elsewhere and note their value to support process understanding in locations where processes are less well understood.


2018 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Claire Brenner ◽  
Karsten Schulz ◽  
mathew herrnegger

2021 ◽  
Vol 10 (12) ◽  
pp. 818
Author(s):  
Jacques Fize ◽  
Ludovic Moncla ◽  
Bruno Martins

Geocoding aims to assign unambiguous locations (i.e., geographic coordinates) to place names (i.e., toponyms) referenced within documents (e.g., within spreadsheet tables or textual paragraphs). This task comes with multiple challenges, such as dealing with referent ambiguity (multiple places with a same name) or reference database completeness. In this work, we propose a geocoding approach based on modeling pairs of toponyms, which returns latitude-longitude coordinates. One of the input toponyms will be geocoded, and the second one is used as context to reduce ambiguities. The proposed approach is based on a deep neural network that uses Long Short-Term Memory (LSTM) units to produce representations from sequences of character n-grams. To train our model, we use toponym co-occurrences collected from different contexts, namely textual (i.e., co-occurrences of toponyms in Wikipedia articles) and geographical (i.e., inclusion and proximity of places based on Geonames data). Experiments based on multiple geographical areas of interest—France, United States, Great-Britain, Nigeria, Argentina and Japan—were conducted. Results show that models trained with co-occurrence data obtained a higher geocoding accuracy, and that proximity relations in combination with co-occurrences can help to obtain a slightly higher accuracy in geographical areas with fewer places in the data sources.


Sign in / Sign up

Export Citation Format

Share Document