scholarly journals The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

2003 ◽  
Vol 7 (2) ◽  
pp. 183-195 ◽  
Author(s):  
W. G. Darling ◽  
A. H. Bath ◽  
J. C. Talbot

Abstract. The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18O and 30‰ for δ2H. Over lowland areas the "altitude effect" is of little significance, but in upland areas is consistent with a range of –0.2 to –0.3‰ per 100 m increase in altitude. Groundwaters dating from the late Pleistocene are usually modified in δ18O and δ2H owing to the effects of climate change on the isotopic composition of rainfall and thus of recharge. Contour maps of isotopic variability prior to 10 ka BP, based on the relatively limited information available from the British Isles, allow a first comparison between groundwaters now and at the end of the last Ice Age. The position of the British Isles in the context of the stable isotope systematics of NW Europe is reviewed briefly. Keywords: Stable isotopes, surfacewaters, groundwater, British Isles

2014 ◽  
Vol 18 (6) ◽  
pp. 2415-2431 ◽  
Author(s):  
S. Tekleab ◽  
J. Wenninger ◽  
S. Uhlenbrook

Abstract. Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as more than 70% of total Nile water flow originates from the Ethiopian highlands. Stable isotope compositions in precipitation, spring water and streamflow were analysed (i) to characterise the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time of water using a sine wave regression approach; and (iii) to identify runoff components using classical two-component hydrograph separations on a seasonal timescale. The results show that the isotopic composition of precipitation exhibits marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic–Indian Ocean, Congo basin, Upper White Nile and the Sudd swamps are the potential moisture source areas during the main rainy (summer) season, while the Indian–Arabian and Mediterranean Sea moisture source areas during little rain (spring) and dry (winter) seasons. The spatial variation in the isotopic composition is influenced by the amount effect as depicted by moderate coefficients of determination on a monthly timescale (R2 varies from 0.38 to 0.68) and weak regression coefficients (R2 varies from 0.18 to 0.58) for the altitude and temperature effects. A mean altitude effect accounting for −0.12‰/100 m for 18O and −0.58‰/100 m for 2H was discernible in precipitation isotope composition. Results from the hydrograph separation on a seasonal timescale indicate the dominance of event water, with an average of 71 and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchments, respectively. Moreover, the stable isotope compositions of streamflow samples were damped compared to the input function of precipitation for both catchments. This damping was used to estimate mean residence times of stream water of 4.1 and 6.0 months at the Chemoga and Jedeb catchment outlets, respectively. Short mean residence times and high fractions of event water components recommend catchment management measures aiming at reduction of overland flow/soil erosion and increasing of soil water retention and recharge to enable sustainable development in these agriculturally dominated catchments.


2010 ◽  
Vol 61 (3) ◽  
pp. 302 ◽  
Author(s):  
Matthew D. Taylor ◽  
Debashish Mazumder

Carbon and nitrogen stable isotope ratios were analysed for hatchery-reared, recaptured and wild mulloway, Argyrosomus japonicus, to investigate temporal and growth-related changes in isotopic composition for stocked fish after release, and to evaluate changes in isotopic composition in terms of ontogenetic dietary switches. δ13C and δ15N values decreased and increased, respectively, after release. The isotope composition of released fish was distinct from wild fish until 200 days after release, but after 200 days post-release fish did not differ significantly from wild fish of similar or greater sizes. Abrupt dietary transitions from crustaceans to teleost fish (>50 cm total length (TL)) were evident in a rapid δ13C and δ15N change in wild mulloway, and δ15N was significantly greater in wild fish >65 cm TL compared with wild fish <50 cm TL. Multivariate carbon and nitrogen isotopic data were suitable for separating stocked and wild fish for up to 200 days after release, but did not separate wild fish grouped according to dietary composition. Carbon and nitrogen isotopic composition closely reflected dietary transitions and rapid adaptation by stocked mulloway to wild diets, which was evident in a high tissue turnover rate of up to 0.017 day–1. Stable isotopes are a useful tool for examining the integration of released fish into stocked ecosystems and can be used to describe convergence in the diets of wild and released fish.


2021 ◽  
Author(s):  
◽  
Lana Cohen

<p>Understanding how atmospheric variability in the Pacific sector of Antarctica drives precipitation is essential for understanding current and past climate changes on the West Antarctic Ice Sheet and the Ross Ice Shelf. Precipitation plays a key role in the Antarctic climate system (via mass balance of ice sheets) and is necessary for understanding past climates (via snow and ice proxies). However precipitation is difficult to measure and model and its variability in these regions is still not well understood. This thesis compiles three separate but inter-related studies which provide further understanding of the atmospheric variability of the Ross Sea region and its role in driving precipitation.   Synoptic classifications over the Southern Ocean in the Pacific sector of Antarctica (50°S–Antarctic coast, 150°E–90°W) are derived from NCEP reanalysis data (1979–2011), producing a set of six synoptic types for the region. These six types describe the atmospheric variability of the Ross and Amundsen Seas region for the past 33 years and show how hemispheric scale circulation patterns such as the El Niño-Southern Oscillation and the Southern Annular Mode are reflected in local precipitation and temperature on the Ross Ice Shelf. The synoptic types also provide understanding of how different source regions and transport pathways can influence precipitation on the Ross Ice Shelf, which is important for the interpretation of climate proxies.   Because of the sparseness of in-situ meteorological measurements in Antarctica, many studies (including the two described above) rely on atmospheric reanalyses data. However, assessments of reanalyses precipitation have only been done on annual and longer timescales. An assessment of the ERA-Interim and NCEP-2 reanalyses precipitation data on synoptic timescales is developed using statistical, event-based analysis of snow accumulation data from automatic weather stations around the Ross Ice Shelf. The results show that there are important differences between the two reanalyses products and that ERA-Interim represents precipitation better than NCEP-2 for this region.   Stable isotopes in snow (δ¹⁸O and δD) are widely used as temperature proxies, but are also influenced by moisture history, source region conditions, and cloud micro-physical processes. Further understanding of the relative importance of these other factors is provided by modeling the isotopic composition of snow at Roosevelt Island, an ice core site on the Ross Ice Shelf. A Rayleigh fractionation model is used to determine isotope composition on sub-storm (hourly) timescales, and the results are compared to measured isotope composition. The model is able to reproduce the significant variability of measured isotopes and shows the importance of air-mass mixing and moisture trajectories on the isotopic composition of snow at Roosevelt Island.   Together, these studies show how synoptic variability influences precipitation on the Ross Ice Shelf and at Roosevelt Island in particular, and they provide a basis for interpreting stable isotopes and other precipitation-based climate proxies in ice cores from the Roosevelt Island site.</p>


2021 ◽  
Vol 21 (13) ◽  
pp. 10159-10177
Author(s):  
Ana Moreno ◽  
Miguel Iglesias ◽  
Cesar Azorin-Molina ◽  
Carlos Pérez-Mejías ◽  
Miguel Bartolomé ◽  
...  

Abstract. For the first time, this article presents a large dataset of precipitation isotopic measurements (δ18Op and δ2Hp) sampled every day or 2 d from seven sites on a west-to-east transect across northern Spain for 2010–2017. The main aim of this study is to (1) characterize the rainfall isotopic variability in northern Spain at daily and monthly timescales and (2) assess the principal factors influencing rainfall isotopic variability. The relative role of air temperature and rainfall in determining the stable isotope composition of precipitation changes along the west-to-east transect, with air temperature being highly correlated with δ18Op at daily and monthly timescales, while a few sites along the transect show a significant negative correlation with precipitation. The highest air temperature–δ18Op dependency is found for a station located in the Pyrenees. Frontal systems associated with North Atlantic cyclones are the dominant mechanism inducing precipitation in this region, particularly in winter. This study allows an exploration of the role of air mass source and trajectory in determining the isotopic composition of rainfall in northern Iberia by characterizing the moisture uptake for three of the seven stations. The importance of continental versus marine moisture sources is evident, with clear seasonal and spatial variations. In addition, the type of precipitation (convective versus frontal rainfall) plays a key role, with convective rainfall associated with higher δ18Op values. This comprehensive spatiotemporal approach to analyzing the rainfall isotopic composition represents another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a paleoclimate and hydrological tracer.


2021 ◽  
Author(s):  
Caroline Soderman ◽  
Oliver Shorttle ◽  
Simon Matthews ◽  
Helen Williams

The geochemistry of global mantle melts suggests that both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) sample lithological and temperature heterogeneities originating in both the upper and lower mantle. Recently, non-traditional stable isotopes have been suggested as a new tool to complement existing tracers of mantle heterogeneity (e.g., major and trace elements, radiogenic isotopes), because mineral- and redox-specific equilibrium stable isotope fractionation effects can link the stable isotope ratios of melts to their source mineralogy and melting degree. Here, we investigate five stable isotope systems (Mg-Ca-Fe-V-Cr) that have shown promise in models or natural samples as tracers of mantle temperature and/or lithological heterogeneity. We use a quantitative model, combining thermodynamically self-consistent mantle melting and equilibrium isotope fractionation models, to explore the behaviour of the isotope ratios of these elements during melting of three mantle lithologies (peridotite, and silica-excess and silica-deficient pyroxenites), responding to changes in mantle mineralogy, oxygen fugacity, temperature and pressure.We find that, given current analytical precision, the stable isotope systems examined here are not predicted to be sensitive to mantle potential temperature variations through equilibrium isotope fractionation processes. By contrast, source lithological heterogeneity is predicted to be detectable in some cases in the stable isotope ratios of erupted basalts, although generally only at proportions of > 10% MORB-like pyroxenite in the mantle source, given current analytical precision. Magnesium and Ca stable isotopes show most sensitivity to a garnet-bearing source lithology, and Fe and Cr stable isotopes are potentially sensitive to the presence of MORB-like pyroxenite in the mantle source, although the behaviour of Cr isotopes is comparatively under-constrained and requires further work to be applied with confidence to mantle melts. When comparing the magnitude and direction of predicted equilibrium isotopic fractionation of peridotite and pyroxenite melts to natural MORB and OIB data, we find that aspects of the natural data (including the mean Mg-Ca-Fe-V isotopic composition of MORB, the range of Mg-Ca isotopic compositions seen in MORB data, the mean Mg-Ca-Cr isotopic composition of OIB, and the range of Mg-V-Cr isotopic compositions in OIB data) can be matched by equilibrium isotope fractionation during partial melting of peridotite and pyroxenite sources -- with pyroxenite required even for some MORB data. However, even when considering analytical uncertainty on natural sample measurements, the range in stable isotope compositions seen across the global MORB and OIB datasets suggests that kinetic isotope fractionation, or processes modifying the isotopic composition of recycled crustal material such that it is distinct from MORB, may be required to explain all the natural data. We conclude that the five stable isotope systems considered here have potential to be powerful complementary tracers to other geochemical tracers of the source lithology of erupted basalts. However, continued improvements in analytical precision in conjunction with experimental and theoretical predictions of isotopic fractionation between mantle minerals and melts are required before these novel stable isotopes can be unambiguously used to understand source heterogeneity in erupted basalts.


2020 ◽  
Author(s):  
Samiksha Deme ◽  
Laurence Y. Yeung ◽  
Tao Sun ◽  
Cin-Ty A. Lee

AbstractOxygen, hydrogen, carbon and nitrogen stable isotopes were measured on a comprehensive sampling of feathers from two spring Hooded Warblers (Setophaga citrina) in Texas to evaluate isotopic variability between feathers and during molt. Isotopic homogeneity within each bird was found across all four isotopic systems, supporting the hypothesis that molt in these neotropical migrants is fully completed on the breeding grounds. Moreover, this homogeneity suggests that the isotopic composition of a single feather is typically representative of the whole songbird. However, each bird also has outlier feathers, which could signify regrowth of lost feathers after prebasic molt.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0236536
Author(s):  
Samiksha Deme ◽  
Laurence Y. Yeung ◽  
Tao Sun ◽  
Cin-Ty A. Lee

Oxygen, hydrogen, carbon and nitrogen stable isotopes were measured on a comprehensive sampling of feathers from two spring Hooded Warblers (Setophaga citrina) in Texas to evaluate isotopic variability between feathers and during molt. Isotopic homogeneity within each bird was found across all four isotopic systems, supporting the hypothesis that molt in these neotropical migrants is fully completed on the breeding grounds. This homogeneity suggests that the isotopic composition of a single feather is may be representative of the whole songbird. However, each bird was found to have one or two outlier feathers, which could signify regrowth of lost feathers after prebasic molt.


2021 ◽  
Author(s):  
◽  
Lana Cohen

<p>Understanding how atmospheric variability in the Pacific sector of Antarctica drives precipitation is essential for understanding current and past climate changes on the West Antarctic Ice Sheet and the Ross Ice Shelf. Precipitation plays a key role in the Antarctic climate system (via mass balance of ice sheets) and is necessary for understanding past climates (via snow and ice proxies). However precipitation is difficult to measure and model and its variability in these regions is still not well understood. This thesis compiles three separate but inter-related studies which provide further understanding of the atmospheric variability of the Ross Sea region and its role in driving precipitation.   Synoptic classifications over the Southern Ocean in the Pacific sector of Antarctica (50°S–Antarctic coast, 150°E–90°W) are derived from NCEP reanalysis data (1979–2011), producing a set of six synoptic types for the region. These six types describe the atmospheric variability of the Ross and Amundsen Seas region for the past 33 years and show how hemispheric scale circulation patterns such as the El Niño-Southern Oscillation and the Southern Annular Mode are reflected in local precipitation and temperature on the Ross Ice Shelf. The synoptic types also provide understanding of how different source regions and transport pathways can influence precipitation on the Ross Ice Shelf, which is important for the interpretation of climate proxies.   Because of the sparseness of in-situ meteorological measurements in Antarctica, many studies (including the two described above) rely on atmospheric reanalyses data. However, assessments of reanalyses precipitation have only been done on annual and longer timescales. An assessment of the ERA-Interim and NCEP-2 reanalyses precipitation data on synoptic timescales is developed using statistical, event-based analysis of snow accumulation data from automatic weather stations around the Ross Ice Shelf. The results show that there are important differences between the two reanalyses products and that ERA-Interim represents precipitation better than NCEP-2 for this region.   Stable isotopes in snow (δ¹⁸O and δD) are widely used as temperature proxies, but are also influenced by moisture history, source region conditions, and cloud micro-physical processes. Further understanding of the relative importance of these other factors is provided by modeling the isotopic composition of snow at Roosevelt Island, an ice core site on the Ross Ice Shelf. A Rayleigh fractionation model is used to determine isotope composition on sub-storm (hourly) timescales, and the results are compared to measured isotope composition. The model is able to reproduce the significant variability of measured isotopes and shows the importance of air-mass mixing and moisture trajectories on the isotopic composition of snow at Roosevelt Island.   Together, these studies show how synoptic variability influences precipitation on the Ross Ice Shelf and at Roosevelt Island in particular, and they provide a basis for interpreting stable isotopes and other precipitation-based climate proxies in ice cores from the Roosevelt Island site.</p>


Sign in / Sign up

Export Citation Format

Share Document