scholarly journals Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales

2021 ◽  
Vol 21 (13) ◽  
pp. 10159-10177
Author(s):  
Ana Moreno ◽  
Miguel Iglesias ◽  
Cesar Azorin-Molina ◽  
Carlos Pérez-Mejías ◽  
Miguel Bartolomé ◽  
...  

Abstract. For the first time, this article presents a large dataset of precipitation isotopic measurements (δ18Op and δ2Hp) sampled every day or 2 d from seven sites on a west-to-east transect across northern Spain for 2010–2017. The main aim of this study is to (1) characterize the rainfall isotopic variability in northern Spain at daily and monthly timescales and (2) assess the principal factors influencing rainfall isotopic variability. The relative role of air temperature and rainfall in determining the stable isotope composition of precipitation changes along the west-to-east transect, with air temperature being highly correlated with δ18Op at daily and monthly timescales, while a few sites along the transect show a significant negative correlation with precipitation. The highest air temperature–δ18Op dependency is found for a station located in the Pyrenees. Frontal systems associated with North Atlantic cyclones are the dominant mechanism inducing precipitation in this region, particularly in winter. This study allows an exploration of the role of air mass source and trajectory in determining the isotopic composition of rainfall in northern Iberia by characterizing the moisture uptake for three of the seven stations. The importance of continental versus marine moisture sources is evident, with clear seasonal and spatial variations. In addition, the type of precipitation (convective versus frontal rainfall) plays a key role, with convective rainfall associated with higher δ18Op values. This comprehensive spatiotemporal approach to analyzing the rainfall isotopic composition represents another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a paleoclimate and hydrological tracer.

2020 ◽  
Author(s):  
Ana Moreno ◽  
Miguel Iglesias ◽  
Cesar Azorin-Molina ◽  
Carlos Pérez-Mejías ◽  
Miguel Bartolomé ◽  
...  

Abstract. This article presents for the first time a large dataset of rainfall isotopic measurements (d18Op and d2Hp) sampled every day or every two days from seven sites in a west-to-east transect across northern Spain for 2010–2017. The main aim of this study is to: (1) characterize rainfall isotopic variability in northern Spain at daily and monthly time scales, and (2) assess the principal influencing factors determining rainfall isotopic variability. This comprehensive spatio-temporal approach allows exploring the role of air mass source in determining the isotopic composition of rainfall in northern Iberia by using back-trajectories; Atlantic fronts are found to be the dominant source of northern Iberia rain events studied. The relative role of air temperature and rainfall amount in determining the stable isotope composition of precipitation changes along the west-to-east transect. Air temperature appears to be the most significant influence on d18Op at daily and monthly time scales with the highest air temperature-d18Op dependency found for the Pyrenean station while a few sites in the transect show a significant negative correlation with precipitation amount. Distance from the coast, site elevation, and moisture source region (Atlantic versus Mediterranean) also significantly modulate the d18Op values and ranges but the type of precipitation (convective vs frontal rainfall) plays a key control, with convective rainfall associated with higher d18Op values. This dataset of the rainfall isotopic composition represents another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a palaeoclimate and hydrological tracer.


2012 ◽  
Vol 8 (5) ◽  
pp. 1457-1471 ◽  
Author(s):  
T. J. Daley ◽  
D. Mauquoy ◽  
F. M. Chambers ◽  
F. A. Street-Perrott ◽  
P. D. M. Hughes ◽  
...  

Abstract. Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from southern South America (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively). δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations.


2020 ◽  
Vol 17 (23) ◽  
pp. 5989-6015
Author(s):  
Quentin Charbonnier ◽  
Julien Bouchez ◽  
Jérôme Gaillardet ◽  
Éric Gayer

Abstract. The biological cycle of rock-derived nutrients on the continents is a major component of element transfer between the Earth's surface compartments, but its magnitude currently remains elusive. The use of the stable isotope composition of rock-derived nutrients, which can be fractionated during biological uptake, provides a promising path forward with respect to quantifying biological cycling and its overall contribution to global element cycling. In this paper, we rely on the nutrient-like behaviour of the trace element barium (Ba) and use its elemental and stable isotope compositions in dissolved and sediment load river samples to investigate biological cycling in the Amazon Basin. From these measurements, we show that dissolved Ba mainly derives from silicate rocks, and a correlation between dissolved Ba and K abundances suggests that biological cycling plays a role in the Ba river budget. Furthermore, the isotope composition of Ba (δ138Ba) in the dissolved load was found to be significantly different from that of the parent silicate rocks, implying that dissolved Ba isotopic signatures are affected by (i) the precipitation of soil-forming secondary phases as well as (ii) biological uptake and release from dead organic matter. Results from an isotope mass balance method applied to the river dissolved load data indicate that, after its release to solution by rock weathering, Ba is partitioned between the river dissolved load, secondary weathering products (such as those found in soils and river sediments), and the biota. In most sub-catchments of the Amazon, river Ba abundances and isotope compositions are significantly affected by biological cycling. Relationships between estimates of Ba cycled through biota and independent metrics of ecosystem dynamics (such as gross primary production and terrestrial ecosystem respiration) allow us to discuss the role of environmental parameters such as climate or erosion rates on the biological cycling of Ba and, by extension, the role of major rock-derived nutrients. In addition, catchment-scale mass and isotope budgets of Ba show that the measured riverine export of Ba is lower than the estimated delivery of Ba to the Earth surface through rock alteration. This indicates the existence of a missing Ba component, which we attribute to the formation of Ba-bearing particulate organics (possibly accumulating as soil organic matter or currently growing biomass within the catchments) and to organic-bound Ba exported as “unsampled” river particulate organic matter. Given our findings on the trace element Ba, we explore whether the river fluxes of most major rock-derived nutrients (K, Mg, Ca) might also be significantly affected by biological uptake or release. A first-order correction of river-derived silicate weathering fluxes from biological cycling shows that the carbon dioxide (CO2) consumption by silicate weathering at the mouth of the Amazon could be several times higher than the previously reported value of 13 × 109 mol CO2 yr−1 (Gaillardet et al., 1997). Overall, our study clearly shows that the chemical and isotope compositions of rivers in the Amazon – and most likely in other large river basins – bear a biological imprint, thereby challenging common assumptions made in weathering studies.


2020 ◽  
Author(s):  
Matthias Cuntz ◽  
Lucas A Cernusak ◽  

<p>Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ<sup>2</sup>H, cellulose δ<sup>2</sup>H and δ<sup>18</sup>O, lignin δ<sup>18</sup>O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water <sup>2</sup>H concentration could differ from that of <sup>18</sup>O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ<sup>2</sup>H (R<sup>2</sup>=0.86, p<0.001) and δ<sup>18</sup>O (R<sup>2</sup>=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ<sup>2</sup>H and δ<sup>18</sup>O are predominantly driven by different environmental variables: leaf water δ<sup>2</sup>H correlated most strongly with the δ<sup>2</sup>H of source water (R<sup>2</sup>=0.68, p<0.001) and atmospheric vapour (R<sup>2</sup>=0.63, p<0.001), whereas leaf water δ<sup>18</sup>O correlated most strongly with air relative humidity (R<sup>2</sup>=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.</p>


2012 ◽  
Vol 8 (1) ◽  
pp. 595-620 ◽  
Author(s):  
T. J. Daley ◽  
D. Mauquoy ◽  
F. M. Chambers

Abstract. Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.


2022 ◽  
pp. 127416
Author(s):  
Fernando Gázquez ◽  
Luis Quindós ◽  
Daniel Rábago ◽  
Ismael Fuente ◽  
Santiago Celaya ◽  
...  

Perception ◽  
10.1068/p3472 ◽  
2003 ◽  
Vol 32 (3) ◽  
pp. 295-305 ◽  
Author(s):  
Olivia L Carter ◽  
John D Pettigrew

Perceptual rivalry is an oscillation of conscious experience that takes place despite univarying, if ambiguous, sensory input. Much current interest is focused on the controversy over the neural site of binocular rivalry, a variety of perceptual rivalry for which a number of different cortical regions have been implicated. Debate continues over the relative role of higher levels of processing compared with primary visual cortex and the suggestion that different forms of rivalry involve different cortical areas. Here we show that the temporal pattern of disappearance and reappearance in motion-induced blindness (MIB) (Bonneh et al, 2001 Nature411 798–801) is highly correlated with the pattern of oscillation reported during binocular rivalry in the same individual. This correlation holds over a wide range of inter-individual variation. Temporal similarity in the two phenomena was strikingly confirmed by the effects of the hallucinogen LSD, which produced the same, extraordinary, pattern of increased rhythmicity in both kinds of perceptual oscillation. Furthermore, MIB demonstrates the two properties previously considered characteristic of binocular rivalry. Namely the distribution of dominance periods can be approximated by a gamma distribution and, in line with Levelt's second proposition of binocular rivalry, predominance of one perceptual phase can be increased through a reduction in the predominance time of the opposing phase. We conclude that (i) MIB is a form of perceptual rivalry, and (ii) there may be a common oscillator responsible for timing aspects of all forms of perceptual rivalry.


2001 ◽  
Vol 58 (6) ◽  
pp. 1253-1260 ◽  
Author(s):  
Nathanael C Overman ◽  
Donna L Parrish

Stable nitrogen and carbon isotope ratios were measured for walleye (Stizostedion vitreum) collected across Lake Champlain, Vermont, to determine relationships between isotopic composition and diet, location of capture, length, weight, and age. Variation in δ13C values reflected area-specific differences in isotopic composition of organisms collected across the lake. A critical assumption in the application of isotope techniques is that a predictable relationship exists between the diet and isotopic composition of an organism. Our results indicate that isotopic fractionation factors may not be independent of age as has largely been assumed. By combining stable nitrogen and carbon isotope analysis with conventional stomach content analysis, we documented significant age effects in the δ15N composition of adult walleye that were not attributable to observed changes in diet. Age accounted for 81% of the variation in δ15N values of walleye (ages 2–27, N = 65, δ15N range = 15.3–19.2‰), providing evidence supporting 15N accumulation over the life span of walleye. Therefore, the risk of making faulty inferences of trophic position and food web interactions based on δ15N values may be increased when age is unknown. Our results indicate that metabolic effects associated with age require greater consideration in applications of stable isotope analysis.


Sign in / Sign up

Export Citation Format

Share Document