scholarly journals Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado

2015 ◽  
Vol 12 (9) ◽  
pp. 9915-9975 ◽  
Author(s):  
R. L. B. Nobrega ◽  
A. C. Guzha ◽  
G. N. Torres ◽  
K. Kovacs ◽  
G. Lamparter ◽  
...  

Abstract. In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr−1) compared to the cropland (828 mm yr−1) and the pasture (532 mm yr−1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and topographic characteristics, and low-till farming techniques in the cropland catchment, additionally to the buffering effect of the gallery forests in these catchments. Although the results of this study provide a useful assessment of catchment rainfall–runoff controls in the Brazilian Cerrado landscape, further research is required to include quantification of the influence of the gallery forests on both hydrological and hydrochemical fluxes, which are important for watershed management and ecosystem services provisioning.

GeoJournal ◽  
2018 ◽  
Vol 84 (3) ◽  
pp. 555-570 ◽  
Author(s):  
Murilo Rodrigues de Arruda ◽  
Maja Slingerland ◽  
José Zilton Lopes Santos ◽  
Ken E. Giller

Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


CATENA ◽  
2019 ◽  
Vol 177 ◽  
pp. 180-188 ◽  
Author(s):  
Fabiane Pereira Machado Dias ◽  
Rodrigo Hübner ◽  
Flávia de Jesus Nunes ◽  
Wilson Mozena Leandro ◽  
Francisco Alisson da Silva Xavier

Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Author(s):  
A. V. Prishchepov ◽  
F. Schierhorn ◽  
N. Dronin ◽  
E. V. Ponkina ◽  
D. Müller

2014 ◽  
Vol 61 ◽  
pp. 19-38 ◽  
Author(s):  
Dave Murray-Rust ◽  
Derek T. Robinson ◽  
Eleonore Guillem ◽  
Eleni Karali ◽  
Mark Rounsevell

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6255 ◽  
Author(s):  
Citlalli Castillo-Guevara ◽  
Mariana Cuautle ◽  
Carlos Lara ◽  
Brenda Juárez-Juárez

Background The discovery-dominance trade-off is the inverse relationship between the ability of a species to discover resources and the species’ dominance of those resources; a paradigm used to explain species coexistence in ant communities dependent on similar resources. However, factors such as stress (e.g., temperature) or disturbance (e.g., removal of biomass) associated with the change in land use, can modify this trade-off. Here, we aimed to determine the potential effects of land use change on dominance hierarchy, food preferences and on the discovery-dominance trade-off. Methods An experiment with baits was used to investigate the dominance hierarchies of ant communities in a temperate mountain habitat in central Mexico. We evaluated the dominance index (DI), food preferences and discovery-dominance trade-offs of ants inhabiting two types of vegetation: a native oak forest and agricultural land resulting from agricultural land use and grazing. Results The ant communities in both environments were comprised of three species of ants (Monomorium minimum, Myrmica mexicana, and Camponotus picipes pilosulus), four morphospecies (Pheidole sp.1 and Pheidole sp.2, Temnothorax sp. and Lasius sp.) and one genus (Formica spp.). All Formicidae showed values of intermediate to low DI, and this factor did not seem to be influenced by the change in land use. Ants in the modified vegetation (i.e., agricultural land) were found to be numerically greater. Overall, a higher number of visits were registered to the tuna bait, although the duration of foraging events to the honey baits was longer. However, foraging times were dependent on the species considered: the generalized Myrmicinae, M. minimum, the ant species with highest DI, foraged for longer periods of time in the agricultural land and on the tuna bait. Meanwhile, the cold-climate specialist Formica spp., with a lower DI, foraged for longer periods of time in the oak (although not significant) and on the honey bait. We found little evidence of the discovery-dominance trade-off; instead, we found considerable diversity in the strategies used by the different species to access resources. This range of strategies is well represented by the generalized Myrmicinae M. minimum, the cold-climate specialists Formica spp. and Temnothorax sp., and the rare species, as the cold climate specialist Lasius sp. (insinuators). Conclusions Our evaluation shows that transformation of the original habitat does not appear to affect the hierarchical dominance of the ant communities, but it does affect their food preferences. Species with higher DI values such as the generalized Myrmicinae are more skilled at resource acquisition in modified habitats. Our results suggest that change in land use promotes an increase in the diversity of foraging strategies used by different ant species. This diversity may contribute to resource partitioning which favors coexistence.


Sign in / Sign up

Export Citation Format

Share Document