scholarly journals SWRC fit – a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure

2007 ◽  
Vol 4 (1) ◽  
pp. 407-437 ◽  
Author(s):  
K. Seki

Abstract. The soil hydraulic parameters for analyzing soil water movement can be determined by fitting a soil water retention curve to a certain function, i.e., a soil hydraulic model. For this purpose, the program "SWRC Fit," which performs nonlinear fitting of soil water retention curves to 5 models by Levenberg-Marquardt method, was developed. The five models are the Brooks and Corey model, the van Genuchten model, Kosugi's log-normal pore-size distribution model, Durner's bimodal pore-size distribution model, and a bimodal log-normal pore-size distribution model propose in this study. This program automatically determines all the necessary conditions for the nonlinear fitting, such as the initial estimate of the parameters, and, therefore, users can simply input the soil water retention data to obtain the necessary parameters. The program can be executed directly from a web page at http://purl.org/net/swrc/; a client version of the software written in numeric calculation language GNU Octave is included in the electronic supplement of this paper. The program was used for determining the soil hydraulic parameters of 420 soils in UNSODA database. After comparing the root mean square error of the unimodal models, the van Genuchten and Kosugi's models were better than the Brooks and Corey model. The bimodal log-normal pore-size distribution model had similar fitting performance to Durner's bimodal pore-size distribution model.

2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


2021 ◽  
Author(s):  
Wenjuan Zheng ◽  
Chongyang Shen ◽  
Lianping Wang ◽  
Yan Jin

<p>Knowledge of the soil water retention curve (SWRC) is critical to mathematical modeling of soil water dynamics in the vadose zone. Traditional SWRC models were developed based on bundles of cylindrical capillaries (BCCs) using a residual water content, which fail to accurately describe the dry end of the curve. This study improved and expanded on the traditional BCC models. Specifically, the total water retention was treated as a weighed superposition of capillary and adsorptive components.We proposed a mathematical continuous expression for<br />water retention from saturation to oven dryness, which also allowed for a partition of capillary and adsorptive retention. We further evaluated six capillary retention functions using different probability laws for pore-size distribution - namely, the log-logistic, Weibull, lognormal, two-parameter van Genuchten (VG), three-parameter VG (or Dagum), and Fredlund–Xing (FX) distributions. Model testing against 144 experimental data showed better agreement of the proposed model with experimental observations than the traditional approaches that use the residualwater content. The Dagum and FX distributions, which have one more degree of freedom, provided better agreement with experimental data than the other four distributions. The log-logistic and lognormal distributions fitted the experimental data better than the Weibull and VG distribution for loam soils. In addition, the fitted weighting factor w using the log-logistic and lognormal distributions better correlated to soil clay content than the other four distributions. Our study suggests that the log-logistic and lognormal distributions are more suitable to model soils’ pore-size distribution than other tested distributions.</p>


2019 ◽  
Vol 83 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Johannes L. Jensen ◽  
Per Schjønning ◽  
Christopher W. Watts ◽  
Bent T. Christensen ◽  
Lars J. Munkholm

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S7-S20 ◽  
Author(s):  
M. Kutílek ◽  
L. Jendele

Products of biological processes are the dominant factor of soil structure formation in A horizons, while in B horizons their role is less expressed. Soil structure influences dominantly the structural domain of the pore system in bimodal soils thus affecting soil hydraulic functions. The form of soil hydraulic functions depends upon the pore size distribution and generally upon configuration of the soil pore system. We used the functions derived for the lognormal pore size distribution and modified them to bi-modal soils. The derived equations were tested by experimental data of catalogued soils. The procedure leads to the separation of two mutually different domains of structural and matrix pores. The value of the pressure head (potential) separating the two domains is not constant and varies in a broad range. For each domain we obtained its water retention function and unsaturated hydraulic conductivity function. The separation of hydraulic functions for the two domains is a key problem in the solution of preferential flow and in controlling lateral flow between the structural and matrix domains. Water retention function is fully physically based while the conductivity function still keeps fitting parameters, too. Their simple relationship to tortuosity and pores connectivity was not confirmed. Since they differ substantially for matrix and structural domains, we suppose that there exists a great difference in configuration of porous systems in structural and matrix domains. The use of uniform fitting conductivity parameters for the whole range of pores is not justifiable.


Sign in / Sign up

Export Citation Format

Share Document