scholarly journals Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – A synthesis

2012 ◽  
Vol 9 (11) ◽  
pp. 13251-13290
Author(s):  
Y. Zhou ◽  
J. Wenninger ◽  
Z. Yang ◽  
L. Yin ◽  
J. Huang ◽  
...  

Abstract. During the last decades, large scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 88% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analyzed from the relationship between the Normalized Difference Vegetation Index (NDVI) and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana) and poplar (Populus simonii)), bushes (salix (Salix psammophila)) and agricultural crops (maize (Zea mays)), depend on groundwater as the dominant water source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying water demand for socio-economical development and to prevent desertification, more water use efficient crops such as sorghum, barley and millet should be promoted to reduce the consumptive water use for irrigation. Willow trees should be used as wind-breaks in croplands and along roads, and dry resistant and less water use intensive plants (for instance native bushes) should be used to vegetate sand dunes.

2013 ◽  
Vol 17 (7) ◽  
pp. 2435-2447 ◽  
Author(s):  
Y. Zhou ◽  
J. Wenninger ◽  
Z. Yang ◽  
L. Yin ◽  
J. Huang ◽  
...  

Abstract. During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI) and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana) and poplar (Populus simonii), bushes (salix – Salix psammophila), and agricultural crops (maize – Zea mays)), depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes) should be used to vegetate sand dunes.


2020 ◽  
Author(s):  
Yong Tian

<p>The ability to dynamically simulate the supply and demand of irrigated water in arid and semi-arid regions is needed to improve water resources management. To meet this challenge, this study developed an agriculture water resources allocation (WRA) module and coupled this module to an integrated surface water-groundwater model GSFLOW. The original GSFLOW, developed by USGS, is able to simulate the entire hydrological cycle. The improved GSFLOW with the WRA module allows the simulation, analysis and management of nearly all components of agriculture water use. It facilitates the analysis of agricultural water use when limited data is available for surface water diversion, groundwater pumpage, or canal information. It can be used to simulate and analyze historical and future conditions. The improved GSFLOW program was applied to the Heihe River Basin (HRB), which is the second largest inland river basin in China. The calibration and validation results of the program shows that the program is capable of simulating both hydrological cycle and actual agriculture water use with limited data. Then the model was used to analyze a set of agriculture water use scenarios, for example, limiting groundwater pumpage, adjusting water allocations between the middle stream and the lower stream. Based on these scenarios, it was found that the improved model could be used as a decision tool to provide better agriculture water resources management strategies. The improved model could be easily used in other basins.</p>


2011 ◽  
Vol 15 (6) ◽  
pp. 2007-2024 ◽  
Author(s):  
M. Hrachowitz ◽  
R. Bohte ◽  
M. L. Mul ◽  
T. A. Bogaard ◽  
H. H. G. Savenije ◽  
...  

Abstract. Hydrological processes in small catchments are not quite understood yet, which is true in particular for catchments in data scarce, semi-arid regions. This is in contrast with the need for a better understanding of water fluxes and the interactions between surface- and groundwater in order to facilitate sustainable water resources management in such environments, where both floods and droughts can result in severe crop loss. In this study, event runoff coefficient analysis and limited tracer data of four small, nested sub-catchments (0.4–25.3 km2) in a data scarce, semi-arid region of Tanzania helped to characterize the distinct response of the study catchments and to gain insights into the dominant runoff processes. The estimated event runoff coefficients were very low and did not exceed 0.09. They were found to be significantly related to the 5-day antecedent precipitation totals as well as to base flow, indicating a close relation to changes in soil moisture and thus potential switches in runoff generation processes. The time scales of the "direct flow" reservoirs, used to compute the event runoff coefficients, were up to one order of magnitude reduced for extreme events, compared to "average" events, suggesting the activation of at least a third flow component, besides base- and direct flow, assumed to be infiltration overland flow. Analysis of multiple tracers highlighted the importance of pre-event water to total runoff, even during intense and high yield precipitation events. It further illustrated the distinct nature of the catchments, in particular with respect to the available water storage, which was suggested by different degrees of tracer damping in the individual streams. The use of multiple tracers subsequently allowed estimating uncertainties in hydrograph separations arising from the use of different tracers. The results highlight the presence of considerable uncertainties, emphasizing the need for multiple tracers in order to avoid misleading results. This study shows the value of hydrological data collection over one whole wet season using multi-tracers to improve the understanding of hydrological functioning and thus for water resources management in data scarce, semi-arid environments.


Sign in / Sign up

Export Citation Format

Share Document